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The existence of global weak solution and local existence of strong solution for 
five-dimensional viscous Camassa–Holm equations on bounded domain are proved 
in this note. The global existence of strong solution is also proved when small initial 
data is given.

© 2015 Elsevier Inc. All rights reserved.

1. Background and the main result

Assume L > 0. The five-dimensional viscous Camassa–Holm (abbreviated as VCH) equations on 
T = [0, L]5 considered in this note are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂(u−α2Δu)
∂t − νΔ(u− α2Δu) + (u · ∇)(u− α2Δu) +

∑m
j=1(u− α2Δu)j∇uj + ∇P

ρ = f,

∇ · u = 0,
u(x, 0) = u0(x),
u is periodic on T ,

(1.1)

where u(x, t) = (u1(x, t), · · · , u5(x, t)) is the velocity of the fluid at point x = (x1, · · · , x5) at time t, 
P
ρ = π

ρ + |u|2 − α2(u · Δu) is the modified pressure, while π is the pressure, ν > 0 is the constant viscosity 
and ρ is a constant density, α > 0 is scale parameter, at the limit α = 0 one obtains the Navier–Stokes 
equations, the function f is a given body forcing.

The viscous Camassa–Holm equations first emerge in [7]. They average the motion of small scales of the 
Navier–Stokes equations. α > 0 is a scale at which the fluid motion is averaged. Specifically, for any fixed α, 
VCH equations are able to capture accurately the motion of the fluid at scales larger than α while averaging 
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out the motion of the fluid at scales smaller than α. The authors in [6] find the relationship between the 
Navier–Stokes equations (Eulerian formulation) and the VCH equations (Lagrangian formulation in some 
sense). Specifically, the unique weak solution of three-dimensional VCH equations converges to the weak 
solution of the three-dimensional Navier–Stokes equations when the scale converges to zero.

The global existence of solution u ∈ L2([0, T ], H3) ∩ L∞([0, T ]; H2) ∩W 1,∞([0, T ]; L2) has been proved 
for the equations on 2D periodic box in [10] with the assumption that f ∈ L2, u0 ∈ H2. Assume 
f ∈ L2, u0 ∈ H1, the unique existence of regular solution u ∈ L∞

loc((0, T ], H3) for the equations on 3D 
periodic box has been proved in [6]. Decay of solution and the unique existence of global weak solution 
u ∈ L∞([0, T ], H2) 

⋂
L2([0, T ], H3) for the equations on bounded domain or in the whole space Rm has 

been obtained in [3] for m = 2, 3, 4 under the conditions that f = 0 and u0 ∈ H2. Assume f ∈ L2([0, T ]; H)
u0 ∈ H1, the unique existence of weak solution for the equations on mD (m = 2, 3, 4) periodic box has 
been proved in [20]. Assume f = 0, u0 ∈ H2+s(Rm) with s > m

2 − 1, the regularity criteria for the equa-
tions has been considered in [21] for m = 2, 3, 4. Assume f = 0, u0 ∈ Hs with s > m

2 + 1 and m = 2, 3, 
the uniqueness and smoothness of the global solution for VCH equations on m-dimensional Riemannian 
manifold with certain boundary conditions (Dirichlet, Neumann, and Mixed type boundary conditions) are 
proved in [15]. The higher dimensional cases are also considered in [15]. One can find in [2,8,9,16,18,19] for 
more research works about VCH equations. Note that VCH equations are formally similar to the Lagrangian 
averaged Navier–Stokes equations. The research history of Lagrangian averaged Navier–Stokes equations 
can be found in [1,5,11–14].

Above all, whether there exists a solution for the five-dimensional VCH equations is still an open problem. 
In this note the VCH equations on 5D periodic box are considered. The existence of global weak solution 
and unique existence of local strong solution for the equations are proved. The strong solution is proved 
globally when small initial data is given.

The techniques of the proof in [3,6,10,21] are energy estimate and Sobolev imbedding. While additional 
interpolations between different Sobolev imbedding are used in [20] and this note. The proof idea for 
m = 2, 3, 4 case and m = 5 case is almost similar. Because of the higher dimension, some imbedding and 
interpolations used for m = 2, 3, 4 case cannot be used for m = 5 case. Also because of this, the uniqueness 
of weak solution for m = 5 case cannot be proved in this paper, though it is true for m = 2, 3, 4 case [20].

One needs some notations to state the result.
Assume 

∫
T fdx =

∫
T u0dx = 0 for simplicity. 

∫
T udx = 0 will be obtained after integration by parts 

from (1.1). Let V = {Φ ∈ C∞
per(T )5; ∇ · Φ = 0, 

∫
T Φdx = 0}, where C∞

per(T )5 denotes the space of all 
T -periodic, C∞ vector fields defined on T . H and V stand for the closure of V in L2(T )5 and H1(T )5
respectively. (·, ·) and | · | will be used to denote the scalar product and norm in H. The scalar product 
and norm in V is denoted by ((·, ·)) and ‖ · ‖. Let A = P (−Δ) is the abstract Stokes operator with 
domain D(A) = H2(T )5

⋂
V , where P is the Leray projector. Under space periodic boundary conditions 

A = −Δ|D(A) is a self-adjoint positive operator which is an isomorphism from V to V ′ (the dual of V ). Hence 
A has eigenvalues {λj}∞j=1 such that 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞. Moreover V = D(A 1

2 ), || · || = |A 1
2 · |, 

((·, ·)) = (A 1
2 ·, A 1

2 ·). By virtue of Poincaré inequality one can show that there is a constant c such that

c−1|Aw| ≤ ||w||H2 ≤ c|Aw|, ∀w ∈ D(A)

and

c−1|A 1
2w| ≤ ||w||H1 ≤ c|A 1

2w|, ∀w ∈ V.

Setting

B(φ, ψ) = P
(
(φ · ∇)ψ

)
, B(ψ)φ = B(φ, ψ), ∀φ, ψ ∈ V,

where B(ψ) is a linear operator acting on φ for every fixed ψ.
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