
The Journal of Systems and Software 116 (2016) 113–132

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Backwards reasoning for model transformations: Method and

applications

Robert Clarisó a , ∗, Jordi Cabot b , Esther Guerra

c , Juan de Lara

c

a Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, Rambla del Poblenou 156, Barcelona 08018, Spain
b ICREA, Barcelona, Spain
c Universidad Autónoma de Madrid, Madrid, Spain

a r t i c l e i n f o

Article history:

Received 4 October 2014

Revised 7 August 2015

Accepted 14 August 2015

Available online 22 August 2015

Keywords:

Model transformation

OCL

Weakest pre-condition

a b s t r a c t

Model transformations are key elements of model driven engineering. Current challenges for transformation

languages include improving usability (i.e., succinct means to express the transformation intent) and devising

powerful analysis methods.

In this paper, we show how backwards reasoning helps in both respects. The reasoning is based on a

method that, given an OCL expression and a transformation rule, calculates a constraint that is satisfiable

before the rule application if and only if the original OCL expression is satisfiable afterwards.

With this method we can improve the usability of the rule execution process by automatically deriv-

ing suitable application conditions for a rule (or rule sequence) to guarantee that applying that rule does

not break any integrity constraint (e.g. meta-model constraints). When combined with model finders, this

method facilitates the validation, verification, testing and diagnosis of transformations, and we show several

applications for both in-place and exogenous transformations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Overview

The advent of model driven engineering (MDE) has prompted

the need to manipulate models in an automated way. Common ma-

nipulations include model-to-model transformations (or exogenous,

where typically input and target models in the transformation con-

form to different meta-models), as well as in-place transformations

like refactorings, animations and optimisations. Many transforma-

tion languages and approaches have been proposed for both kinds

of transformations, where research is mostly directed towards usable

languages providing good integration with MDE standards (e.g. UML,

MOF, OCL) and supporting some kind of analysis (Rahim and Whittle,

2015).

We propose to use backwards reasoning to achieve both goals.

Backwards reasoning methods have been applied in different do-

mains, for example to analyse logic programs (Howe et al., 2004),

Petri nets (Yang et al., 2005) or timed automata (Kwiatkowska et al.,

2007). The unifying idea is that, instead of starting with an initial sys-

tem configuration and exploring possible reachable states, backwards

reasoning assumes some (un)desirable target state and computes the

∗ Corresponding author. Tel.: +34 933263410; fax: +34 933568822.

E-mail addresses: rclariso@uoc.edu (R. Clarisó), jordi.cabot@icrea.cat (J. Cabot),

Esther.Guerra@uam.es (E. Guerra), Juan.deLara@uam.es (J. de Lara).

corresponding source state(s). In this paper, we present a method that

enables backwards reasoning for model transformations, and show

its applications both to achieve a better usability of transformation

languages and to provide increased analysis capabilities.

Many model transformation languages are based on rules (Ehrig

et al., 2006b; Jouault et al., 2008; Kolovos et al., 2008) whose applica-

bility is given by an object pattern complemented with a guard, typ-

ically given as an OCL expression. Our backwards reasoning is based

on the automated calculation of such guards, given an OCL expression

that the model is expected to fulfil after the rule application. Hence,

given a constraint C that a model M must satisfy after the application

of a rule r , the method generates the weakest constraint C ′ r such that

if the model satisfies it before applying r , then the resulting model is

guaranteed to satisfy C .

The method is agnostic with respect to the particular model

transformation language employed, and therefore applicable to many

of them—like graph transformation (GT) (Ehrig et al., 2006b), ATL

(Jouault et al., 2008) or ETL (Kolovos et al., 2008)—because it only

requires the list of atomic actions performed by the rule. Moreover, it

can be applied both to in-place and exogenous transformations.

1.2. Running example

As a running example, let us consider an in-place transformation

to animate a Domain Specific Visual Language (DSVL) for production

systems. The meta-model for the language is shown to the left of

http://dx.doi.org/10.1016/j.jss.2015.08.017

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.017&domain=pdf
mailto:rclariso@uoc.edu
mailto:jordi.cabot@icrea.cat
mailto:Esther.Guerra@uam.es
mailto:Juan.deLara@uam.es
http://dx.doi.org/10.1016/j.jss.2015.08.017

114 R. Clarisó et al. / The Journal of Systems and Software 116 (2016) 113–132

Fig. 1. Meta-model (left). A model (right).

Fig. 2. Two simulation rules.

Fig. 1 . It defines machines with input and output conveyors that can

be interconnected. Conveyors may contain pieces, and an OCL con-

straint ensures that the number of pieces the conveyors actually hold

does not exceed their capacity. The right of the same figure shows

a model with one machine and two conveyors, in abstract (top) and

concrete syntax (bottom). The left conveyor has two raw pieces, while

the right one has two processed ones.

In this example, the semantics of the DSVL is defined using GT. In

this approach, rules are made of two graphs, the left and the right

hand sides (LHS/RHS), which encode the pre- and post-conditions for

rule application. Intuitively, a rule can be applied to a model when-

ever an occurrence of its LHS is found in it. Then, applying the rule

consists in deleting the elements of LHS −RHS , and creating those of

RHS −LHS . In this way, the graphical part of the GT rule process
on the left of Fig. 2 describes how machines behave, consuming

and producing pieces: the Raw piece is deleted and a Processed
one is created in the output conveyor. Rule move in the same fig-

ure moves pieces of any kind (we use an “abstract object” labelled r
of type Piece , which can get instantiated for both types Raw and

Processed) between two conveyors.

1.3. Benefits of our backwards reasoning method

To improve the usability of transformation languages, each trans-

formation rule should be consistent with the integrity constraints of

the meta-model. Otherwise, users would be forced to use some kind

of integrity checking mechanism that verifies that the output model

is correct after every rule execution. Hence, the guard of each rule

needs to ensure that, for every possible model where the rule is ap-

plicable, the result after applying the rule satisfies all meta-model in-

variants (a property called strong executability in Cabot et al. (2010b)).

For instance, in the running example of Fig. 1 the OCL integrity con-

straint in the meta-model forbids creating pieces in output convey-

ors that are already full. Below each rule, we provide an application

condition that restricts the applicability of the rule to the cases where

the output conveyor has enough capacity for the newly created piece.

Unfortunately, in current practice, the engineer has to encode a

constraint for the same purpose twice : once in the meta-model, and

another as the guard of each rule in the transformation to ensure that

rule applications do not yield inconsistent models. Even worse, the

designer has the burden of calculating an application condition that,

given the rule’s actions, forbids applying the rule if the execution has

any chance to break some meta-model constraint. Then, this work has

to be repeated for every rule in the grammar, as done for example in

rule move of Fig. 2 .

Instead, our method would derive the application condition for

a rule starting from the OCL constraints of the meta-model. This

presents several advantages from the point of view of the transfor-

mation developer: (i) it notably reduces his work, (ii) it facilitates

grammar and meta-model evolution, as a change in the constraints

of the latter has less impact on the rules, as many application condi-

tions can be automatically derived, (iii) it eliminates the risk of not

adding appropriate conditions that would cause rule applications to

violate the meta-model constraints, and (iv) it eliminates the risk of

adding too restrictive conditions that would forbid applying the rule,

even when its application would not break any constraint (i.e. a con-

dition that is not the weakest). In fact, the OCL condition of the rules

in Fig. 2 is not the weakest, as we will show in Section 4 . Moreover,

this has also a clear advantage at run-time, as tools do not need to

implement a roll-back mechanism if some rule application leads to

an inconsistent state, and do not even need to check the meta-model

constraints at each intermediate state.

Furthermore, combined with techniques for model finding (e.g.

Cabot et al. 2014), our method enables the analysis of a plethora

of correctness properties for the specified transformations. As we

will see, several verification and testing procedures are easier to ap-

ply once the post-conditions have been advanced which facilitates

a more homogeneous analysis and a better tool integration of those

procedures with current modelling editors. Besides, we propose the

new notion of transformation diagnosis , defined as the process of: (i)

finding a problem in a transformation, (ii) explaining to the engineer

what the problem is, and (iii) proposing some solution. Hence, for

example, we are not only able to detect if a rule is not strongly exe-

cutable, but can explain why (giving a model that makes the rule fail)

and propose a solution (giving the weakest pre-condition that makes

the rule strongly executable).

1.4. Contributions and structure of this paper

This paper continues the work in Cabot et al. (2010a), where the

method was developed and applied to generate rule pre-conditions

given some meta-model constraints. In this paper, we make a system-

atic analysis on the applicability of the method, and show techniques

Download English Version:

https://daneshyari.com/en/article/461503

Download Persian Version:

https://daneshyari.com/article/461503

Daneshyari.com

https://daneshyari.com/en/article/461503
https://daneshyari.com/article/461503
https://daneshyari.com

