Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Closure of Hardy spaces in the Bloch space $\stackrel{\Rightarrow}{\Rightarrow}$

CrossMark

Petros Galanopoulos^a, Nacho Monreal Galán^b, Jordi Pau^{c,*}

^a School of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Department of Mathematics, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece

^c Departament de Matemàtica Aplicada i Analisi, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain

ARTICLE INFO

Article history: Received 25 August 2014 Available online 27 April 2015 Submitted by R. Timoney

Keywords: Hardy spaces Bloch spaces Area function

ABSTRACT

A description of the Bloch functions that can be approximated in the Bloch norm by functions in the Hardy space H^p of the unit ball of \mathbb{C}^n for 0 is given.When 0 , the result is new even in the case of the unit disk.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{D} and \mathbb{T} be, respectively, the unit disk and the unit circle of the complex plane \mathbb{C} . For 0 ,recall that the Hardy space $H^p(\mathbb{D})$ is the space of analytic functions f in the unit disk such that

$$\|f\|_{p}^{p} = \sup_{0 < r < 1} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} \frac{d\theta}{2\pi} < +\infty.$$

For $p = \infty$, $H^{\infty}(\mathbb{D})$ is the space of all bounded analytic functions in the unit disk. Recall also that the Bloch space $\mathcal{B}(\mathbb{D})$ is formed by the analytic functions f on \mathbb{D} such that

$$||f||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

N. Monreal Galán was supported in part by the project MTM2011-24606, and in part also by the research project PE1 (3378) implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), co-financed by the European Social Fund (ESF) and the Greek State. Jordi Pau was supported by the DGICYT grant MTM2011-27932-C02-01 (MCyT/MEC) and the grant 2014SGR289 (Generalitat de Catalunya).

^{*} Corresponding author.

E-mail addresses: petrosgala@math.auth.gr (P. Galanopoulos), nacho.mgalan@gmail.com (N. Monreal Galán), jordi.pau@ub.edu (J. Pau).

In [10], a characterization of the closure in the Bloch norm of $H^p \cap \mathcal{B}$ for 1 was given in terms of $the area of certain non-tangential level sets of the Bloch function: given a function <math>f \in \mathcal{B}$ and $\varepsilon > 0$ define the level set of f as

$$\Omega_{\varepsilon}(f) := \{ z \in \mathbb{D} : (1 - |z|^2) | f'(z) | \ge \varepsilon \}.$$

Recall that a Stolz angle with vertex in $\zeta \in \mathbb{T}$ is the set

$$\Gamma(\zeta) = \Gamma_{\alpha}(\zeta) := \{ z \in \mathbb{D} : |z - \zeta| < \frac{\alpha}{2}(1 - |z|) \}$$

with $\alpha > 2$, and that

$$A_h(\Omega) := \int_{\Omega} \frac{dA(z)}{(1-|z|^2)^2},$$

where dA(z) is the area measure in \mathbb{D} , represents the hyperbolic area of $\Omega \subset \mathbb{D}$. Then the result is the following:

Theorem A. Let f be a function in the Bloch space \mathcal{B} and 1 . Then <math>f is in the closure in the Bloch norm of $\mathcal{B} \cap H^p$ if and only if for any $\varepsilon > 0$ the function $A_h(\Gamma(\zeta) \cap \Omega_{\varepsilon}(f))^{1/2}$ is in $L^p(\mathbb{T})$.

A basic tool in the proof of this result was the characterization of Hardy spaces in terms of the area function (a result due to J. Marcinkiewicz and A. Zygmund [9] for p > 1, and extended to the case 0by A. Calderón [3]), that is, for <math>0 , a function <math>f is in H^p if and only if its corresponding Lusin Area function

$$A(f)(\zeta) = \left(\int\limits_{\Gamma(\zeta)} |f'(z)|^2 dA(z)\right)^{1/2}$$

is in $L^p(\mathbb{T})$. The proof of Theorem A was based on a previous result by P. Jones on the closure of *BMOA* in \mathcal{B} (see [6]). The duality argument given in the proof in [10] cannot be used for 0 , so that thiscase requires of new techniques. In this paper we solve the case <math>0 . It turns out that the proof $given works equally for all <math>0 , and furthermore, it may be done in the open unit ball <math>\mathbb{B}_n$ of the *n*-dimensional complex space \mathbb{C}^n . The case $p = \infty$ is still an open problem, and will be discussed in the last section.

Now we are going to introduce some notation. For $z, w \in \mathbb{C}^n$, let

$$\langle z, w \rangle = z_1 \bar{w}_1 + \dots + z_n \bar{w}_n.$$

Hence, $|z|^2 = \langle z, z \rangle$. In this context, for $0 the Hardy space <math>H^p(\mathbb{B}_n)$ consists of those holomorphic functions f on \mathbb{B}_n such that

$$\|f\|_p^p = \sup_{0 < r < 1} \int_{\mathbb{S}_n} |f(r\zeta)|^p \, d\sigma(\zeta) < +\infty,$$

where \mathbb{S}_n denotes the unit sphere in \mathbb{C}^n and σ is the normalized surface measure on \mathbb{S}_n . As in the case for n = 1, for $p = \infty$ the corresponding space $H^{\infty}(\mathbb{B}_n)$ is the space of bounded holomorphic functions defined on \mathbb{B}_n .

Download English Version:

https://daneshyari.com/en/article/4615036

Download Persian Version:

https://daneshyari.com/article/4615036

Daneshyari.com