
The Journal of Systems and Software 116 (2016) 162–176

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Systematic scalability assessment for feature oriented multi-tenant

services

Davy Preuveneers ∗, Thomas Heyman , Yolande Berbers , Wouter Joosen

iMinds-DistriNet, Department of Computer Science, KU Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium

a r t i c l e i n f o

Article history:

Received 9 October 2014

Revised 11 December 2015

Accepted 14 December 2015

Available online 22 December 2015

Keywords:

Distributed systems

Scalability

Tool support

a b s t r a c t

Recent software engineering paradigms such as software product lines, supporting development tech-

niques like feature modeling, and cloud provisioning models such as platform and infrastructure as a

service, allow for great flexibility during both software design and deployment, resulting in potentially

large cost savings. However, all this flexibility comes with a catch: as the combinatorial complexity of

optional design features and deployment variability increases, the difficulty of assessing system qualities

such as scalability and quality of service increases too. And if the software itself is not scalable (for in-

stance, because of a specific set of selected features), deploying additional service instances is a futile

endeavor. Clearly there is a need to systematically measure the impact of feature selection on scalability,

as the potential cost savings can be completely mitigated by the risk of having a system that is unable to

meet service demand.

In this work, we document our results on systematic load testing for automated quality of service

and scalability analysis. The major contribution of our work is tool support and a methodology to ana-

lyze the scalability of these distributed, feature oriented multi-tenant software systems in a continuous

integration process. We discuss our approach to select features for load testing such that a representative

set of feature combinations is used to elicit valuable information on the performance impact and feature

interactions. Additionally, we highlight how our methodology and framework for performance and scala-

bility prediction differs from state-of-practice solutions. We take the viewpoint of both the tenant of the

service and the service provider, and report on our experiences applying the approach to an industrial

use case in the domain of electronic payments. We conclude that the integration of systematic scalabil-

ity tests in a continuous integration process offers strong advantages to software developers and service

providers, such as the ability to quantify the impact of new features in existing service compositions, and

the early detection of hidden feature interactions that may negatively affect the overall performance of

multi-tenant services.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Feature oriented software development, cloud computing and

multi-tenancy are triggering a tremendous shift in the software

systems landscape. Software product line (SPL) oriented develop-

ment methods and feature modeling allow customers to pay only

for the features they need, resulting in a potentially large reduc-

tion of software costs. Cloud based deployment environments al-

low customers to pay only for the computational resources they

need, resulting in a potentially large reduction of operational costs.

This operational cost reduction is pushed even further in multi-

tenant software as a service (SaaS) applications, where all tenants

∗ Corresponding author. Tel.: +3216327853.

E-mail address: davy.preuveneers@cs.kuleuven.be (D. Preuveneers).

share resources by using the same instance of the SaaS application.

In order to maintain flexibility and be able to cater to varying ten-

ant requirements, dynamic software product lines are often used,

where tenant specific customization of the SaaS application is en-

forced at runtime. However, all this flexibility comes with a catch:

As the combinatorial complexity of feature and deployment vari-

ability increases, the difficulty of assessing system qualities such

as scalability and quality of service increases too. And if the soft-

ware itself is not scalable (for instance, because of a specific set of

selected features), deploying additional service instances is a futile

endeavor.

There are two stakeholders in particular to whom (unantic-

ipated) feature interactions and their impact on scalability and

quality of service are important: the service customer (i.e. the en-

tity that acquires a product from a software product line, or the

tenant in a multi-tenant system) and the service provider (i.e. the

http://dx.doi.org/10.1016/j.jss.2015.12.024

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.12.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.12.024&domain=pdf
mailto:davy.preuveneers@cs.kuleuven.be
http://dx.doi.org/10.1016/j.jss.2015.12.024

D. Preuveneers et al. / The Journal of Systems and Software 116 (2016) 162–176 163

owner of a software product line, or the manager of a multi-tenant

system). Service customers need to know what the cost of select-

ing a new feature is on overall service scalability, as they want to

avoid rendering the system unable to scale up, resulting in an un-

responsive system and frustrated end users. Service providers need

to know what tenants can be hosted on the same machines with-

out unanticipated interactions in virtualized environments. Deploy-

ing a new customer’s service (and associated features) in a virtu-

alized environment could interact with, and impair, the scalability

of another customer’s service, which would equally frustrate that

customer.

Clearly there is a need to systematically measure the impact of

feature selection on scalability, as the potential cost savings can be

completely mitigated by the risk of having a system that is unable

to meet service demand. While a large body of work exists that fo-

cuses on specific parts of this scalability problem, not much work

has been done to study whether it is feasible to quantify the scal-

ability and performance of such a complex distributed system in

a practical way. In this work, we document a holistic approach on

systematic load testing for automated quality of service and scala-

bility analysis. The major contribution of our work is tool support

and a methodology for scalability analysis of these distributed, fea-

ture oriented software systems throughout a continuous integra-

tion process. We take the viewpoint of both the service customer

(i.e. the tenant) and the service provider, and report on our ex-

periences applying the approach to an industrial use case in the

domain of electronic payments. We conclude that it is possible

to integrate systematic scalability tests in a continuous integration

process, which allows early detection of feature interactions that

negatively impact performance.

This paper is structured as follows. In Section 2 , we make ex-

plicit what we mean by scalability and quality of service, and we

summarize the current state of the art of scalability and quality of

service assessment. In Section 3 , we introduce a case study in the

domain of e-payment, as well as an implementation, to illustrate

the problem of scalability assessment in this context. Additionally,

we introduce our system for systematic scalability assessment. In

Section 4 , we introduce the framework and methodology we use

to perform systematic scalability assessment on multi-tenant fea-

ture oriented systems. In Section 5 , we document our results of

applying the framework to the case study. The work is discussed

in Section 6 . We conclude in Section 7 .

2. Background and related work

We give a brief overview of scalability in Section 2.1 , and

overview dynamic software product lines and feature modeling in

Section 2.2 . We summarize related work on performance modeling

and prediction in Section 2.3 .

2.1. Scalability

Assessing system performance and scalability is a practice that

cross cuts many levels of abstraction, ranging from low-level

benchmarks of execution environments and embedded software, to

high-level distributed systems and business process benchmarks.

For instance, Guthaus et al. (2001) perform benchmarking on em-

bedded programs and provide a comparison with the industry

standard benchmark suite SPEC20 0 0. Ghosh et al. (2005) analyze

the performance of WiMax networks. Uskov (2012) provides a

comprehensive study of the performance of authentication and en-

cryption algorithms for virtual private networking. Rashwan et al.

(2012) study the performance of message authentication codes for

mobile networks, for both residence time and power consump-

tion. Dayarathna and Suzumura (2013) document their results of

comparing the performance of three complex event processing en-

gines via benchmarking. Carvalho and Pereira (2010) document a

method to analyze scalability of running systems from the data

center viewpoint, by only measuring CPU utilization.

This work considers the scalability of large, multi-tenant dis-

tributed software systems. The scalability of a system is often de-

fined as its ability to handle increasing user load. When faced with

a user load of p concurrent users that issue a certain volume of re-

quests per second, a service will be able to successfully handle a

specific fraction of p , called its throughput, and denoted by X (p). In

the ideal case, a service can handle the requests generated by all

users concurrently, or X(p) = p. That situation, also referred to as

linear scalability, only tends to hold in real systems for low values

of p , i.e. low load situations. For increasing loads, however, X (p) <

p , as a system will not be able to successfully handle the requests

generated by all users concurrently, and some requests will have

to wait or, in extreme cases, be dropped. To find X (p), we can sim-

ulate p concurrent users that issue requests at a fixed rate, and

measure X (p). Based on this data, we can calculate the capacity ra-

tio C(p) = X (p) /X (1) , which is the ratio of the throughput of the

system for a load of p , compared to the baseline of its throughput

for a load of 1. The relative capacity curve C (p) is a good indicator

for how much the observed behavior diverges from the ideal lin-

ear scalability C L (p) = p. The closer C (p) is to C L (p), the better the

scalability of that system configuration.

There are a number of models that attempt to quantify the ca-

pacity C of a system. One of these models, the universal scalability

law (USL) (Gunther, 1993; Gross et al., 2013), takes into account

both the serial nature of the workload of that system (i.e. how

much of the workload can be parallelized in theory) and coherency

costs (i.e. the costs incurred when waiting for data to become con-

sistent between different collaborating processes). The universal

scalability law quantifies capacity in function of user load as:

C(p) =

p

1 + σ (p − 1) + κ p(p − 1)

Here, κ denotes the impact of coherency on the system per-

formance, and σ denotes the serial fraction, which is the fraction

of the workload that cannot be parallelized. When the coherency

factor κ is negligible, the maximum performance of the system is

bounded only by the serial fraction, and the model reduces to Am-

dahl’s Law (Amdahl, 1967). When κ is non zero, the performance

model of a system will have a specific maximum, achieved for a

load p ∗ = � √

(1 + σ) /κ� . Beyond p ∗, the throughput of a system

will decrease. An illustration of a scalability curve according to the

Universal Scalability Law, and a comparison to Amdahl’s Law, is

given in Fig. 1 . We can find values for σ and κ for a specific ser-

vice deployment by performing linear regression on measured val-

ues for C (p) (Gunther, 2007).

So what happens to a request when the load is sufficiently high

that C (p) � p ? When the system remains stable and does not

drop requests, the residence time of those requests (i.e. the time

between issuing a request and receiving an answer) will start to

grow exponentially. While the service capacity considers the busi-

ness view (i.e. How many servers do I need to handle this many con-

current users?), residence time considers the end user’s perspective

(i.e. How long do I have to wait before my request is handled?), and

is therefore an equally important aspect of scalability to consider.

However, only knowing the average residence time does not suf-

fice. In the case of quality of service policies, which are usually

expressed in function of X % of requests that need to be handled

within Y (milli-) seconds, we need to know the overall statistical

distribution of the residence times.

To measure values for C (p) and obtain residence time distri-

butions, load testing frameworks simulate users by generating ac-

tual requests. There are a number of load testing frameworks in

Download English Version:

https://daneshyari.com/en/article/461506

Download Persian Version:

https://daneshyari.com/article/461506

Daneshyari.com

https://daneshyari.com/en/article/461506
https://daneshyari.com/article/461506
https://daneshyari.com

