Contents lists available at ScienceDirect

ELSEVIER

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Minimal immersions of Riemannian manifolds in products of space forms

Fernando Manfio^{a,*}, Feliciano Vitório^b

^a ICMC, Universidade de São Paulo, São Carlos - SP, 13561-060, Brazil
^b IM, Universidade Federal de Alagoas, Maceió - AL, 57072-900, Brazil

ARTICLE INFO

Article history: Received 14 May 2014 Available online 11 November 2014 Submitted by H.R. Parks

Keywords: Minimal immersions Isometric immersions Riemannian product of space forms

ABSTRACT

In this paper, we give natural extensions to cylinders and tori of a classical result due to T. Takahashi [8] about minimal immersions into spheres. More precisely, we deal with Euclidean isometric immersions whose projections in \mathbb{R}^N satisfy a spectral condition of their Laplacian.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

An isometric immersion $f: M^m \to N^n$ of a Riemannian manifold M in another Riemannian manifold Nis said to be *minimal* if its mean curvature vector field H vanishes. The study of minimal surfaces is one of the oldest subjects in differential geometry, having its origin with the work of Euler and Lagrange. In the last century, a series of works have been developed in the study of properties of minimal immersions, whose ambient space has constant sectional curvature. In particular, minimal immersions in the sphere \mathbb{S}^n play an important role in the theory, as for example the famous paper of J. Simons [7].

Let $f : M^m \to \mathbb{R}^n$ be an isometric immersion of an *m*-dimensional manifold M into the Euclidean space \mathbb{R}^n . Associated with the induced metric on M, it is defined the Laplace operator Δ acting on $C^{\infty}(M)$. This Laplacian can be extended in a natural way to the immersion f. A well-known result by J. Eells and J.H. Sampson [3] asserts that the immersion f is minimal if and only if $\Delta f = 0$. The following result, due to T. Takahashi [8], states that the immersion f realizes a minimal immersion in a sphere if and only if its coordinate functions are eigenfunctions of the Laplace operator with the same nonzero eigenvalue.

Theorem 1. Let $F: M^m \to \mathbb{R}^{n+1}$ be an isometric immersion such that

$$\Delta F = -mcF$$

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2014.11.013 0022-247X/© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: manfio@icmc.usp.br (F. Manfio), feliciano@pos.mat.ufal.br (F. Vitório).

for some constant $c \neq 0$. Then c > 0 and there exists a minimal isometric immersion $f : M^m \to \mathbb{S}^n_c$ such that $F = i \circ f$.

O. Garay generalized Theorem 1 for the hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ satisfying $\Delta f = Af$, where A is a constant $(n + 1) \times (n + 1)$ diagonal matrix. He proved in [4] that such a hypersurface is either minimal or an open subset of a sphere or of a cylinder. In this direction, J. Park [6] classified the hypersurfaces in a space form or in Lorentzian space whose immersion f satisfies $\Delta f = Af + B$, where A is a constant square matrix and B is a constant vector. Similar results were obtained in [1], where the authors study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian space forms which satisfy the condition $\Delta f = Af + B$, where A is an endomorphism and B is a constant vector. We would point out that this problem is strongly connected to other related topics as immersions whose mean curvature satisfies a polynomial equation in the Laplacian, biharmonic submanifolds, finite type submanifolds and others. For the last, we refer to [2], where the author discusses the problem of determining the geometrical structure of a submanifold knowing some simple analytic information.

In this work we shall deal with an isometric immersion $f : M^m \to \mathbb{R}^N$ of a Riemannian manifold M^m into the Euclidean space \mathbb{R}^N . If the submanifold f(M) is contained in a cylinder $\mathbb{S}^n_c \times \mathbb{R}^k \subset \mathbb{R}^N$ or in a torus $\mathbb{S}^n_c \times \mathbb{S}^k_d \subset \mathbb{R}^N$, we shall call that the *immersion* f realizes an immersion in a cylinder or in a torus, respectively. Motivated by recent works on the submanifold theory in the product of space forms [5], we obtain theorems that give us necessary and sufficient conditions for an isometric immersion $f : M^m \to \mathbb{R}^N$ to realize a minimal immersion in a cylinder or in a torus (cf. Theorems 4 and 8).

2. Preliminaries

Let M^m be a Riemannian manifold and $h \in C^{\infty}(M)$. The *hessian* of h is the symmetric section of $Lin(TM \times TM)$ defined by

$$\operatorname{Hess} h(X, Y) = XY(h) - \nabla_X Y(h)$$

for all $X, Y \in TM$. Equivalently,

$$\operatorname{Hess} h(X,Y) = \langle \nabla_X \operatorname{grad} h, Y \rangle$$

where $X, Y \in TM$ and grad h is the gradient of h. The Laplacian Δh of a function $h \in C^{\infty}(M)$ at the point $p \in M$ is defined as

$$\Delta h(p) = \operatorname{trace} \operatorname{Hess} h(p) = \operatorname{div} \operatorname{grad} h(p).$$

Consider now an isometric immersion $f: M^m \to \mathbb{R}^n$. For a fixed $v \in \mathbb{R}^n$, let $h \in C^{\infty}(M)$ be the height function with respect to the hyperplane normal to v, given by $h(p) = \langle f(p), v \rangle$. Then

$$\operatorname{Hess} h(X,Y) = \left\langle \alpha_f(X,Y), v \right\rangle \tag{1}$$

for any $X, Y \in TM$. For an isometric immersion $f: M^n \to \mathbb{R}^n$, by $\Delta f(p)$ at the point $p \in M$ we mean the vector

$$\Delta f(p) = (\Delta f_1(p), \dots, \Delta f_n(p)),$$

where $f = (f_1, \ldots, f_n)$. Taking traces in (1) we obtain

Download English Version:

https://daneshyari.com/en/article/4615061

Download Persian Version:

https://daneshyari.com/article/4615061

Daneshyari.com