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This work contains a detailed study of a one parameter generalization of the 
2D-Hermite polynomials and a two parameter extension of Zernike’s disc poly-
nomials. We derive linear and bilinear generating functions, and explicit formulas 
for our generalizations and study integrals of products of some of these 2D orthogo-
nal polynomials. We also establish a combinatorial inequality involving elementary 
symmetric functions and solve the connection coefficient problem for our polyno-
mials.
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1. Introduction

The 2D-Hermite polynomials

Hm,n(z1, z2) =
m∧n∑
k=0

(
m

k

)(
n

k

)
(−1)kk!zm−k

1 zn−k
2 (1.1)

were introduced by Ito in [16] and have many applications to physical problems, see [2,4,22,25–27]. Math-
ematical properties of these polynomials have been developed in [7–9]. A multilinear generating function, 
of Kibble–Slepian type [17], is proved in [11]. The combinatorics of integrals of products of 2D-Hermite 
polynomials has been explored in [13] while the combinatorics of the 2D-Hermite polynomials, of their 
generating functions including the Kibble–Slepian type formula is in our forthcoming paper, [14], Ismail 
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and Zhang [15] gave two q-analogues of the 2D-Hermite polynomials. They studied these q-polynomials in 
great detail.

Ismail and Zhang [15] identified a general class of two variable polynomials whose measure is the product 
of the uniform measure on the circle times a radial measure. This class not only contains the 2D-Hermite 
polynomials and their q-analogues but it also contains the generalized Zernike (or disc) polynomials and 
their q-analogues. This will be formulated in Section 2. The generalized disc polynomials have been known 
for a long time, see [20,19,18]. More recent papers are [28] and [1]. They form a one parameter generalization 
of the original Zernike polynomials.

In Section 3 we study a one parameter extension of the 2D-Hermite polynomials. These polynomials 
appeared in [15] and are denoted by Z(β)

m,n(z1, z2). We record the definition, orthogonality relation, and the 
three term recurrence relations in Section 3. In Section 3 we also derive several differential properties of our 
polynomials. Section 4 contains a two parameter generalization of Zernike polynomials, so they contain one 
additional parameter. Several authors considered the sign regularity of integrals of products of orthogonal 
polynomials times certain functions. Some of the literature on this problem is in Askey’s classic [3], see also 
Chapter 9 of [10]. In Section 5 we analyze the positivity of the integrals

∞∫
0

N∏
j=1

L(α−nj)
nj

(−x)e−λxdx.

Our analysis leads to a curious rationale symmetric functions with nonnegative integral coefficients. This 
will be stated as Theorem 5.6.

2. General construction

The general construction given here for 2D-systems is due to Ismail and Zhang [15]. One starts with a 
system of orthogonal polynomials {φn(r; α)} satisfying the orthogonality relation

∞∫
0

φm(r;α)φn(r;α)rαdμ(r) = ζn(α)δm,n, α ≥ 0. (2.1)

It is assumed the μ does not depend on α. Let

φn(r;α) =
n∑

j=0
cj(n, α)rn−j , cj(n, α) ∈ R, (2.2)

and define polynomials

fn+α,n(z1, z2) =
n∑

j=0
cj(n, α)zn+α−j

1 zn−j
2 = zα1 φn(z1z2;α). (2.3)

Also define fn,m(z1, z2) = fm,n(z2, z1). Thus fm,n(z, z̄) = fn,m(z, ̄z).

Theorem 2.1. For m ≥ n the polynomials {fm,n(z, ̄z)} satisfy the orthogonality relation
∫
R2

fm,n(z, z̄)fs,t(z, z̄)
dθ

2πdμ
(
r2) = ζn(m− n)δm,sδn,t. (2.4)

We now come to the three term recurrence relations.
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