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This paper investigates the Cauchy problem for an isentropic magnetogasdynamic 
system. Under certain reasonable hypotheses on the initial data, we obtain the global 
existence and uniqueness of the C1 solution to the system. Meanwhile, when the 
hypotheses on the initial data do not hold, we obtain the blow-up phenomena of the 
C1 solution to the system. The bounds of the solution are shown to depend on the 
parameter ν, which characterizes a one-dimensional plane flow (ν = 0) or a three-
dimensional cylindrically symmetric flow (ν = 1); it is shown that the existence of 
the finite time singularity is significantly influenced by the magnetic field strength 
present in the flow along with the initial data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are concerned with the global existence of smooth solution to the Cauchy problem for 
magnetogasdynamics (see [2,9])

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρt + (ρu)x + νuρ

x
= 0,

ut + uux + 1
ρ

(
p + B2/2μ

)
x

= 0, t > 0, x ∈ R,

ρ(0, x) = ρ0(x), u(0, x) = u0(x), x ∈ R,

(1.1)

where ρ > 0, u, p ≥ 0, and B denote, respectively, the density, particle velocity, pressure and the magnetic 
field with μ as the magnetic permeability being treated as a constant; the variable t stands for time and the 
variable x denotes the spatial coordinate, being either axial in flows with planar (ν = 0) geometry or radial 
in cylindrically symmetric (ν = 1) configuration. The magnetic field is transverse to the flow direction; 
indeed, in a cylindrically symmetric flow it is along the axis of symmetry. In (1.1), p and B are known 
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functions defined as p = k1ρ
γ , B = k2ρ with k1, k2 as positive constants; γ is the adiabatic constant that 

lies in the range 1 < γ ≤ 2 for most gases. Here ν may take values 0 or 1. Recently, the Riemann problem 
and elementary waves interactions for system (1.1) with a planar case (ν = 0) were studied by Sekhar et al. 
(see [8]). The discussion of global solution to the Cauchy problem (1.1) for the one dimensional planar flow 
of an isotropic fluid is largely complete [4,6]; for the related work on such a system, we refer to [1,5,10,12,13]
and the references therein.

The purpose of this paper is to study the Cauchy problem for system (1.1) with smooth C1 bounded 
initial data. Indeed, we study the global existence and uniqueness of the C1 solution to Cauchy problem 
under certain reasonable hypotheses on the initial data; when the hypotheses on the initial data do not 
hold, we discuss the blow-up phenomenon of the C1 solution to the system (1.1). By using the Riemann 
invariants, system (1.1) can be rewritten as a diagonal form. For this purpose, we first set U = (ρ u)T , 
then for smooth solutions, system (1.1) is equivalent to

(
ρ

u

)
t

+
(

u ρ
w2

ρ u

)(
ρ

u

)
x

+
(

νuρ
x

0

)
= 0, (1.2)

where w = (c2 + b2)1/2 is the magneto-acoustic speed with c = (p′(ρ)) 1
2 as the local sound speed and 

b = (B2(ρ)/μρ)1/2 the Alfven speed. Here, prime denotes differentiation with respect to ρ. Remember that 
p = k1ρ

γ with 1 < γ ≤ 2 and B = k2ρ, a short calculation shows that

2w′(ρ)ρ ≤ w. (1.3)

Next, it is easy to see that the eigenvalues of A are λ1 = u − w and λ2 = u + w. Thus, the system (1.2)
is strictly hyperbolic when w > 0. Now, we introduce the Riemann invariants for the system (1.2) corre-
sponding to the eigenvalues λ1 and λ2, respectively

R− = u−
ρ∫

ρ∗

w(y)
y

dy, R+ = u +
ρ∫

ρ∗

w(y)
y

dy, (1.4)

where ρ∗ > 0 is a fixed number. By (1.4), it is easy to check that

∂λ1

∂R− = ∂λ2

∂R+ = 1
2 + w′(ρ)ρ

2w(ρ) ,
∂λ1

∂R+ = ∂λ2

∂R− = 1
2 − w′(ρ)ρ

2w(ρ) . (1.5)

Meanwhile, for smooth solutions, system (1.2) is equivalent to

⎧⎨
⎩

R−
t + λ1R

−
x = νuw

x
,

R+
t + λ2R

+
x = −νuw

x
, t > 0, x ∈ R,

(1.6)

subject to bounded and differentiable initial data

R−(0, x) = u0 −
ρ0∫

ρ∗

w(y)
y

dy, R+(0, x) = u0 +
ρ0∫

ρ∗

w(y)
y

dy. (1.7)

Through this reformulated system, there exists a uniform invariant region for the system (1.1) (see [7]). 
Thus there exist constants 0 < ρmin < ρmax and umin < umax, depending only on the initial data (ρ0, u0), 
such that
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