Second order estimates for boundary blowup solutions of quasilinear elliptic equations

Ester Giarrusso ${ }^{\text {a,* }}$, Monica Marras ${ }^{\text {b }}$, Giovanni Porru ${ }^{\text {b }}$
a Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", University of Napoli, Napoli, Italy
b Dipartimento di Matematica e Informatica, University of Cagliari, Cagliari, Italy

A R T I C L E I N F O

Article history:

Received 22 July 2014
Available online 13 November 2014
Submitted by V. Radulescu
Keywords:
Elliptic equations
Large solutions
Second order boundary
approximation

Abstract

Let $\Omega \subset R^{N}$ be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary $\partial \Omega$ on the behavior of the blow-up solution to the equation $\Delta u=u^{p}|\nabla u|^{q}$. Under appropriate conditions on p and q, we find asymptotic expansions up to the second order of the solution u in terms of the distance from x to the boundary $\partial \Omega$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study the boundary blow-up problem

$$
\begin{equation*}
\Delta u=u^{p}|\nabla u|^{q} \quad \text { in } \Omega, u \rightarrow \infty \text { as } x \rightarrow \partial \Omega, \tag{1}
\end{equation*}
$$

where Ω is a bounded smooth domain in $\mathbb{R}^{N}, N \geq 2, p>0,0 \leq q \leq(p+3) /(p+2)$ and $p+q>1$. To prove the existence of a positive large solution we first consider, for $0<\epsilon<1$, the problem

$$
\Delta u=u^{p}\left(\epsilon+|\nabla u|^{2}\right)^{\frac{q}{2}} \quad \text { in } \Omega, u \rightarrow \infty \text { as } x \rightarrow \partial \Omega .
$$

The existence of a positive solution $u=u_{\epsilon}$ for this new problem is proved in [3,6,12]. By Lemma 4.1 of [12] we know that, for any compact $G \subset \Omega$ there is a constant M such that $u_{\epsilon}(x) \leq M$ for all $x \in G$. Note that, since $|\nabla u|^{q}<\left(\epsilon+|\nabla u|^{2}\right)^{\frac{q}{2}}<\left(1+|\nabla u|^{2}\right)^{\frac{q}{2}}$, the constant M can be chosen independent of ϵ. Moreover, by Theorem 3.1 (p. 266) of [8] (or by Theorems 14.1 and 15.1 of $[7]$) we get a bound of $\left|\nabla u_{\epsilon}(x)\right|$ in terms of M for all $x \in G$. Finally, by Theorem 4.2 of [12] a sequence $u_{\epsilon_{i}}$, with $\epsilon_{i} \rightarrow 0$, tends to a solution u of problem (1).

[^0]http://dx.doi.org/10.1016/j.jmaa.2014.11.017
0022-247X/© 2014 Elsevier Inc. All rights reserved.

We are interested in the behavior of the solution u near the boundary $\partial \Omega$. Problems of this kind are discussed in many papers; see, for instance, $[1,2,4,5,10,13]$ and the survey paper [14]. For $q=0$, C. Bandle in [1] has found the estimate

$$
\begin{equation*}
u(x)=\left(\frac{p-1}{\sqrt{2(p+1)}} \delta(x)\right)^{\frac{2}{1-p}}\left[1+\frac{(N-1) H(\bar{x})}{p+3} \delta(x)+o(\delta(x))\right], \tag{2}
\end{equation*}
$$

where $\delta(x)$ denotes the distance from x to the boundary $\partial \Omega$, and $H(\bar{x})$ denotes the mean curvature of $\partial \Omega$ at the point \bar{x} nearest to x.

In the present paper we find an estimate similar to (2) for the solution of problem (1). More precisely, for $0 \leq q<(p+3) /(p+2)$ we find

$$
\begin{equation*}
u(x)=\phi(\delta(x))\left[1+\frac{(2-q)(N-1) H(x)}{2(p+3-q(p+2))} \delta(x)+O(1)(\delta(x))^{\sigma}\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(t)=\left(\frac{2-q}{p+q-1}\right)^{\frac{2-q}{p+q-1}}\left(\frac{p+1}{2-q}\right)^{\frac{1}{p+q-1}} t^{\frac{q-2}{p+q-1}}, \tag{4}
\end{equation*}
$$

$(N-1) H(x)=-\Delta \delta(x), \sigma>1$ is a suitable constant and $O(1)$ is a bounded quantity. Of course, we can replace $H(x)$ by $H(\bar{x})$ as in (1), replacing $O(1)(\delta(x))^{\sigma}$ by $o(\delta(x))$.

The case $q=(p+3) /(p+2)$ appears to be critical. In this case we find

$$
\begin{equation*}
u(x)=\phi(\delta(x))\left[1+\frac{(N-1) H(x)}{2(p+1)} \delta(x) \log \frac{1}{\delta(x)}+O(1) \delta(x)\left(\log \frac{1}{\delta(x)}\right)^{\sigma}\right] \tag{5}
\end{equation*}
$$

where $0<\sigma<1$.

2. Main results

Let $p>0,0 \leq q<2, p+q>1$. Consider the equation in (1) in dimension $N=1$ and $\Omega=(0, \infty)$. If $u=\phi(t)>0$ and $\phi^{\prime}(t)<0$ we have

$$
\begin{equation*}
\phi^{\prime \prime}=\phi^{p}\left(-\phi^{\prime}\right)^{q} . \tag{6}
\end{equation*}
$$

A solution of (6) such that $\phi(t) \rightarrow \infty$ as $t \rightarrow 0$ is precisely the function defined in (4).
In what follows we denote by $C>1$ a constant which may change from term to term.
Lemma 2.1. Let $A(\rho, R) \subset \mathbb{R}^{N}, N \geq 2$, be the annulus with radii ρ and R centered at the origin. Let ϕ be the function defined in (4), let $u(x)$ be a radial solution to problem (1) in $\Omega=A(\rho, R)$, and let $v(r)=u(x)$ for $r=|x|$. If $p>0,0 \leq q<(p+3) /(p+2)$ and $p+q>1$ we have

$$
\begin{array}{cc}
v(r)<\phi(R-r)[1+C(R-r)], & r \in\left(r^{\prime}, R\right), \\
v(r)>\phi(r-\rho)[1-C(r-\rho)], & r \in\left(\rho, r^{\prime \prime}\right) . \tag{8}
\end{array}
$$

https://daneshyari.com/en/article/4615072

Download Persian Version:

https://daneshyari.com/article/4615072

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ester.giarrusso@unina.it (E. Giarrusso), mmarras@unica.it (M. Marras), porru@unica.it (G. Porru).

