Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Second order estimates for boundary blowup solutions of quasilinear elliptic equations

霐

Ester Giarrusso^{a,*}, Monica Marras^b, Giovanni Porru^b

^a Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", University of Napoli, Napoli, Italy
 ^b Dipartimento di Matematica e Informatica, University of Cagliari, Cagliari, Italy

ARTICLE INFO

Article history: Received 22 July 2014 Available online 13 November 2014 Submitted by V. Radulescu

Keywords: Elliptic equations Large solutions Second order boundary approximation

1. Introduction

We study the boundary blow-up problem

$$\Delta u = u^p |\nabla u|^q \quad \text{in } \Omega, \ u \to \infty \text{ as } x \to \partial \Omega, \tag{1}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , $N \ge 2$, p > 0, $0 \le q \le (p+3)/(p+2)$ and p+q > 1. To prove the existence of a positive large solution we first consider, for $0 < \epsilon < 1$, the problem

$$\Delta u = u^p \left(\epsilon + |\nabla u|^2 \right)^{\frac{q}{2}} \quad \text{in } \Omega, \ u \to \infty \text{ as } x \to \partial \Omega.$$

The existence of a positive solution $u = u_{\epsilon}$ for this new problem is proved in [3,6,12]. By Lemma 4.1 of [12] we know that, for any compact $G \subset \Omega$ there is a constant M such that $u_{\epsilon}(x) \leq M$ for all $x \in G$. Note that, since $|\nabla u|^q < (\epsilon + |\nabla u|^2)^{\frac{q}{2}} < (1 + |\nabla u|^2)^{\frac{q}{2}}$, the constant M can be chosen independent of ϵ . Moreover, by Theorem 3.1 (p. 266) of [8] (or by Theorems 14.1 and 15.1 of [7]) we get a bound of $|\nabla u_{\epsilon}(x)|$ in terms of M for all $x \in G$. Finally, by Theorem 4.2 of [12] a sequence u_{ϵ_i} , with $\epsilon_i \to 0$, tends to a solution u of problem (1).

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2014.11.017 0022-247X/© 2014 Elsevier Inc. All rights reserved.

ABSTRACT

Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary $\partial \Omega$ on the behavior of the blow-up solution to the equation $\Delta u = u^p |\nabla u|^q$. Under appropriate conditions on p and q, we find asymptotic expansions up to the second order of the solution u in terms of the distance from x to the boundary $\partial \Omega$.

© 2014 Elsevier Inc. All rights reserved.

E-mail addresses: ester.giarrusso@unina.it (E. Giarrusso), mmarras@unica.it (M. Marras), porru@unica.it (G. Porru).

We are interested in the behavior of the solution u near the boundary $\partial \Omega$. Problems of this kind are discussed in many papers; see, for instance, [1,2,4,5,10,13] and the survey paper [14]. For q = 0, C. Bandle in [1] has found the estimate

$$u(x) = \left(\frac{p-1}{\sqrt{2(p+1)}}\delta(x)\right)^{\frac{2}{1-p}} \left[1 + \frac{(N-1)H(\bar{x})}{p+3}\delta(x) + o(\delta(x))\right],\tag{2}$$

where $\delta(x)$ denotes the distance from x to the boundary $\partial \Omega$, and $H(\bar{x})$ denotes the mean curvature of $\partial \Omega$ at the point \bar{x} nearest to x.

In the present paper we find an estimate similar to (2) for the solution of problem (1). More precisely, for $0 \le q < (p+3)/(p+2)$ we find

$$u(x) = \phi(\delta(x)) \left[1 + \frac{(2-q)(N-1)H(x)}{2(p+3-q(p+2))} \delta(x) + O(1)(\delta(x))^{\sigma} \right],$$
(3)

where

$$\phi(t) = \left(\frac{2-q}{p+q-1}\right)^{\frac{2-q}{p+q-1}} \left(\frac{p+1}{2-q}\right)^{\frac{1}{p+q-1}} t^{\frac{q-2}{p+q-1}},\tag{4}$$

 $(N-1)H(x) = -\Delta\delta(x), \sigma > 1$ is a suitable constant and O(1) is a bounded quantity. Of course, we can replace H(x) by $H(\bar{x})$ as in (1), replacing $O(1)(\delta(x))^{\sigma}$ by $o(\delta(x))$.

The case q = (p+3)/(p+2) appears to be critical. In this case we find

$$u(x) = \phi\left(\delta(x)\right) \left[1 + \frac{(N-1)H(x)}{2(p+1)}\delta(x)\log\frac{1}{\delta(x)} + O(1)\delta(x)\left(\log\frac{1}{\delta(x)}\right)^{\sigma}\right],\tag{5}$$

where $0 < \sigma < 1$.

2. Main results

Let $p > 0, 0 \le q < 2, p + q > 1$. Consider the equation in (1) in dimension N = 1 and $\Omega = (0, \infty)$. If $u = \phi(t) > 0$ and $\phi'(t) < 0$ we have

$$\phi^{\prime\prime} = \phi^p \left(-\phi^\prime\right)^q. \tag{6}$$

A solution of (6) such that $\phi(t) \to \infty$ as $t \to 0$ is precisely the function defined in (4).

In what follows we denote by C > 1 a constant which may change from term to term.

Lemma 2.1. Let $A(\rho, R) \subset \mathbb{R}^N$, $N \geq 2$, be the annulus with radii ρ and R centered at the origin. Let ϕ be the function defined in (4), let u(x) be a radial solution to problem (1) in $\Omega = A(\rho, R)$, and let v(r) = u(x) for r = |x|. If p > 0, $0 \leq q < (p+3)/(p+2)$ and p+q > 1 we have

$$v(r) < \phi(R-r) [1 + C(R-r)], \quad r \in (r', R),$$
(7)

$$v(r) > \phi(r-\rho) \left[1 - C(r-\rho) \right], \quad r \in \left(\rho, r''\right).$$

$$\tag{8}$$

Download English Version:

https://daneshyari.com/en/article/4615072

Download Persian Version:

https://daneshyari.com/article/4615072

Daneshyari.com