
The Journal of Systems and Software 116 (2016) 191–205 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

10 years of software architecture knowledge management: Practice and 

future 

Rafael Capilla 

a , ∗, Anton Jansen 

b , Antony Tang 

c , Paris Avgeriou 

d , Muhammad Ali Babar e 

a Rey Juan Carlos University, Madrid, Spain 
b Philips Innovation Services, Eindhoven, The Netherlands 
c Swinburne University of Technology, Melbourne, Australia 
d University of Groningen, Groningen, The Netherlands 
e University of Adelaide, Adelaide, Australia 

a r t i c l e i n f o 

Article history: 

Received 11 October 2014 

Revised 29 May 2015 

Accepted 14 August 2015 

Available online 9 September 2015 

Keywords: 

Architectural knowledge management 

Architectural design decisions 

Agile development 

a b s t r a c t 

The importance of architectural knowledge (AK) management for software development has been high- 

lighted over the past ten years, where a significant amount of research has been done. Since the first systems 

using design rationale in the seventies and eighties to the more modern approaches using AK for designing 

software architectures, a variety of models, approaches, and research tools have leveraged the interests of re- 

searchers and practitioners in AK management (AKM). Capturing, sharing, and using AK has many benefits for 

software designers and maintainers, but the cost to capture this relevant knowledge hampers a widespread 

use by software companies. However, as the improvements made over the last decade didn’t boost a wider 

adoption of AKM approaches, there is a need to identify the successes and shortcomings of current AK ap- 

proaches and know what industry needs from AK. Therefore, as researchers and promoters of many of the AK 

research tools in the early stages where AK became relevant for the software architecture community, and 

based on our experience and observations, we provide in this research an informal retrospective analysis of 

what has been done and the challenges and trends for a future research agenda to promote AK use in modern 

software development practices. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

The field of Software Architecture has matured over a period of 30 

years ( Shaw and Clements, 2006, Clements and Shaw, 2009 ) from the 

early basic concepts from the mid-80s to the ubiquitous proliferation 

of the role of a software architect in contemporary industrial prac- 

tice. During this time-span, there are two prevailing paradigms that 

represent the essence of software architecture. The initial paradigm 

was purely technical and examined architecture in terms of sys- 

tem structure and behavior with components and connectors, views, 

Architecture Description Languages, Architecture Design methods, 

patterns, reference architectures etc. The subsequent paradigm was 

socio-technical and considered architecture from the point of view 

of its stakeholders, looking at how they reason and make decisions. 

The difference among the two paradigms is simple: the first con- 

cerns the end result of architecting, as it culminates in the actual 

∗ Corresponding author. Tel.: +34607901188. 

E-mail addresses: rafael.capilla@urjc.es (R. Capilla), anton.jansen@philips.com 

(A. Jansen), atang@swin.edu.au (A. Tang), paris@cs.rug.nl (P. Avgeriou), 

ali.babar@adelaide.edu.au (M.A. Babar). 

design, while the second (usually referred to as Architecture Knowl- 

edge Management) concerns how we essentially reached that end re- 

sult. The seed ideas for the second paradigm were planted already in 

the early 90s ( Perry and Wolf, 1992, Kruchten, 2004 ), but the shift 

essentially started a decade ago ( Bosch, 2004 ), where it is suggested 

that AK is made up of design decisions and design ( Kruchten et al., 

2006 ). 

At the core of Architecture Knowledge Management, lies the prin- 

ciple of considering the architect as a decision maker instead of 

someone ‘drawing boxes and lines’. This development was certainly 

welcomed in the professional circles of software engineering and is 

aligned with the recognition given to the profession in recent polls 

(CNN Money 1 listed Software Architect as the 8th top-paying job in 

2009 and the best job in 2010). However, it was soon realized that ar- 

chitecture decision making has been more of an art than a craft ( van 

Heesch and Avgeriou, 2011, Tang et al., 2010 ). The reasoning process 

of software architects is rather ad-hoc and is not supported by typical 

software engineering processes and tools. Architects tend to base de- 

cisions on their own experiences and expertise, which in most cases 

1 http://money.cnn.com/ 

http://dx.doi.org/10.1016/j.jss.2015.08.054 

0164-1212/© 2015 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.jss.2015.08.054
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.054&domain=pdf
mailto:rafael.capilla@urjc.es
mailto:anton.jansen@philips.com
mailto:atang@swin.edu.au
mailto:paris@cs.rug.nl
mailto:ali.babar@adelaide.edu.au
http://money.cnn.com/
http://dx.doi.org/10.1016/j.jss.2015.08.054


192 R. Capilla et al. / The Journal of Systems and Software 116 (2016) 191–205 

are invaluable for providing optimal solutions, but is also prone to bi- 

ases and fallacies ( Kruchten, 2011, Stacy and MacMillan, 1995, Tang, 

2011, van Heesch et al., 2013 ). Architects are not likely to document 

their decisions and rationale, despite the well-established benefits of 

doing so. Subsequently consuming architecture decisions and the rest 

of the AK is problematic as the knowledge is often incomplete and out 

of date. 

The shift from the first to the second paradigm sparked a substan- 

tial amount of research to solve the aforementioned problems; and 

this has been achieved at least to some extent. We have seen a num- 

ber of meta-models that aim at representing architecture knowledge 

mostly focused on design decisions and rationale. Several tools have 

been developed and validated, with the purpose of supporting stake- 

holders to both produce and consume AK ( Tang et al., 2010, Li et al., 

2013, Tofan et al., 2014 ). A few studies have examined the reasoning 

process of architects aiming at providing process support that can 

systematize the decision making process ( van Heesch et al., 2013 ). 

Having reached its first decade of life, it is time to revisit the re- 

lated ideas and technologies of AKM and examine how far we have 

come and what are the promising future directions. We attempt to 

highlight prominent results from the research community but also 

present an overview from the state of practice in AKM in software in- 

dustry based on interviews. This paper is built upon the previous sur- 

vey of AKM tools in 2010 ( Tang et al., 2010 ). In this paper, we updated 

our survey of AKM methods and tools in recent years to examine new 

trends and developments. We interviewed industry practitioners to 

understand recent challenges with regards to the use of AKM. We an- 

alyzed the results of the interviews and compared that to the facilities 

provided by the latest AKM tools. From this analysis, we suggested the 

trends and development in this field. 

The remainder of this paper is as follows. In Section 2 , we moti- 

vate the need for capturing AK and we highlight the different areas 

affected by the knowledge capturing problem. Section 3 revisits the 

recent research over the past ten years and compiles a retrospective 

view of major AK centric approaches, from the conceptual models to 

the research tools produced along this period. In Section 4 , we discuss 

the AK challenges and needs of industry using AK through a set of in- 

terviews where we have drawn interesting observations of AK usage 

and the barriers for AK adoption from several software companies. In 

Section 5 , we provide a set of short perspectives and trends for AK 

use ranging from the sustainability of AK, education, and the role of 

AK for agile development among others. Finally, Section 6 draws our 

conclusions from this retrospective analysis along the past ten years 

using AK in software architecture approaches. 

2. The needs for capturing architectural knowledge (AK) 

It has been suggested that “if it [an architecture design] is not writ- 

ten down, it does not exist” ( Clements et al., 2011 ), making a point 

for the importance of architecture documentation. Software architec- 

tures are often constructed without documented AK. However, the 

intricate knowledge of a system, especially in a large and complex 

system easily evaporates if AK is non-documented. The consequences 

would be incurring design and implementation issues ( Bosch, 2004 ). 

If a simple system is built by only one person, and the system is only 

maintained and inspected by the same person, and that person has 

perfect memory, the need for capturing AK is probably not there. 

However, these assumptions do not hold for most of the non-trivial 

modern-day systems. Many potential issues can arise without AK. 

Rittel and Weber observed that developing software is a process 

of negotiation and deliberation between many stakeholders. Many 

unknowns arise during this process and therefore they suggested 

that it is a “wicked problem” ( Rittel and Webber, 1973 ). Shaw and 

Clement described the coming of age of software architecture ( Shaw 

and Clements, 2006 ). They outlined the maturation process which 

includes the development of research tools, internal and external 

enhancements, the development of usable tools and processes, and 

the popularization and adaptation of processes and technologies. 

These developments may have helped but they have not solved is- 

sues that require developing and managing AK. 

The fundamental elements of AK were described by Perry and 

Wolf. They stated that software architecture comprises elements, 

form, rationale ( Perry and Wolf, 1992 ). They emphasized connec- 

tions between elements as “glue”. These glues, as represented by 

views, allow designers to connect the architecture elements together. 

A software architecture can be neatly described by common architec- 

tural patterns or styles ( Harrison et al., 2007, Garlan and Shaw, 1993, 

Cloutier et al., 2010 ), and the application of those patterns constitutes 

some of the most important design decisions ( Harrison et al., 2007 ). 

Whilst these approaches outlined the essence of architectural knowl- 

edge, there was a movement on justifying an architectural design. 

Approaches like gIBIS ( Conklin and Begeman, 1988 ), DRL ( Lee and 

Lai, 1996 ), QOC ( Maclean et al., 1996 ) were developed for capturing 

reasoning in a design. The common elements in these models were 

design issues, design alternatives, and some form of argumentation. 

This movement emphasized that designers need to know the end re- 

sults of a design as well as to know the intents and the rationale of 

how a designer arrives at a design. Unfortunately, these models were 

not widely accepted by practitioners. Conklin and Burgess-Yakemovic 

explained that as architecture models and their explanations were 

separate, design rationale can grow into unwieldy of loosely orga- 

nized textual information that is difficult to use ( Conklin and Burgess- 

Yakemovic, 1996 ). 

To prevent knowledge vaporization and architectural drift, the 

modeling of decision-centric AK re-emerged with Bosch’s suggestion 

that software architecture design decisions lack a first class repre- 

sentation, and lacking a cross-cutting view ( Bosch, 2004 ). Around 

the same time, Burge modeled design rationale with SEURAT ( Burge, 

2005 ) and Tyree and Akerman showed the advantages of captur- 

ing design rationale in their practice ( Tyree and Akerman, 2005 ). A 

plethora of works on modeling design rationale and different types 

of software AK had emerged. Many of these works argued the various 

needs for capturing AK. The main uses for AK are nicely summarized 

by ( de Boer et al., 2007 ), where the four broad categories of uses of 

AK are sharing, compliance, discovery and traceability. We now have 

ample experience of sharing, compliance, discovery and traceability 

of AK and are able to apply lessons learned in practice, but also to 

pursue open research problems ( Vliet et al., 2009 ). 

2.1. Sharing 

Software development is largely a group activity where many peo- 

ple/stakeholders work together and a shared understanding between 

them is essential ( Fischer and Ostwald, 2001 ). Stakeholders need to 

have a shared understanding of the goals, the requirements, problems 

to be solved, the system behavior, how to construct them (i.e. design 

and implementation), and contexts such as assumptions, constraints, 

risks, tradeoffs etc. The communication of this knowledge to achieve 

a common understanding is difficult, especially involving multidisci- 

plinary design ( Bonnema, 2014 ). So capturing this knowledge is nec- 

essary ( Babar et al., 2007 ). Creating such shared understanding also 

alleviates miscommunication and information overload ( Fischer and 

Ostwald, 2001 ). Perry and Wolf observed that knowledge evaporates 

over time ( Perry and Wolf, 1992 ). Nonaka and Takeuchi observed that 

much knowledge is tacit ( Nonaka and Takeuchi, 1995 ). The reten- 

tion and communication of knowledge are therefore essential when 

large software systems are maintained over long period of time by 

many developers. The need for capturing knowledge is important 

also when software is produced by developers across different geo- 

graphic areas and communicating is difficult ( Dutoit et al., 2001 ). Due 

to large number of stakeholders and the dispersion of knowledge, 

many challenges exist, such as how to share AK and how to reuse AK 



Download English Version:

https://daneshyari.com/en/article/461508

Download Persian Version:

https://daneshyari.com/article/461508

Daneshyari.com

https://daneshyari.com/en/article/461508
https://daneshyari.com/article/461508
https://daneshyari.com

