Perturbations of symmetric elliptic Hamiltonians of degree four in a complex domain

Bassem Ben Hamed ${ }^{\text {a,* }}$, Ameni Gargouri ${ }^{\text {b }}$, Lubomir Gavrilov ${ }^{\text {c }}$
${ }^{\text {a }}$ Ecole Nationale d'Electronique et des Télécommunications de Sfax, Route de Tunis km 10, BP 1163, 3021 Sfax, Tunisia
${ }^{\text {b }}$ Faculté des Sciences de Sfax, Département de Mathématiques, BP 1171, 3000 Sfax, Tunisia
${ }^{\text {c }}$ Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, 31062 Toulouse, France

A R T I C L E I N F O

Article history:

Received 21 January 2014
Available online 11 November 2014
Submitted by C.E. Wayne

Keywords:

Limit cycles
16th Hilbert problem
Zeros of elliptic integrals depending on parameters

A B S T R A C T

The cyclicity of the exterior period annulus of the asymmetrically perturbed Duffing oscillator is a well known problem extensively studied in the literature. In the present paper we provide a complete bifurcation diagram for the number of the zeros of the associated Melnikov function in a suitable complex domain.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the asymmetrically perturbed Duffing oscillator

$$
X_{\lambda, \nu}:\left\{\begin{array}{l}
\dot{x}=y \tag{1}\\
\dot{y}=x-x^{3}+\nu x^{2}+\lambda_{0} y+\lambda_{1} x y+\lambda_{2} x^{2} y
\end{array}\right.
$$

in which ν, λ_{i} are small real parameters. For $\nu=\lambda_{0}=\lambda_{1}=\lambda_{2}=0$ the system is integrable, with a first integral

$$
H=\frac{y^{2}}{2}-\frac{x^{2}}{2}+\frac{x^{4}}{4}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2014.11.018
0022-247X/© 2014 Elsevier Inc. All rights reserved.

Fig. 1. Phase portrait of X_{0} on the (x, y)-plane and the graph of $h=-\frac{x^{2}}{2}+\frac{x^{4}}{4}$.
and its phase portrait is shown in Fig. 1. Alternatively, the system (1) defines a real plane foliation by the formula

$$
\begin{equation*}
d\left(H-\nu \frac{x^{3}}{3}\right)+\left(\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}\right) y d x=0 . \tag{2}
\end{equation*}
$$

The maximal number of limit cycles, which bifurcate from the exterior period annulus of X_{0} with respect to the perturbation $X_{\lambda, \nu}$ is equal to two, as it has been shown by Iliev and Perko [7] and Li, Mardesic and Roussarie [9]:

Theorem 1. (See [7,9].) The cyclicity of the exterior period annulus $\left\{(x, y) \in \mathbb{R}^{2}: H(x, y)>0\right\}$ of $d H=0$ with respect to the perturbation (1) equals two.

Remark 1. The above theorem claims that from any compact, contained in the open exterior period annulus $\left\{(x, y) \in \mathbb{R}^{2}: H(x, y)>0\right\}$, bifurcate at most two limit cycles. It says nothing about the limit cycles bifurcating from the separatrix eight-loop or from infinity (i.e. the equator of the Poincare sphere).

Let $\{\gamma(h)\}_{h}$ be the continuous family of exterior ovals of the non-perturbed system, where

$$
\gamma(h) \subset\{H=h\}
$$

and consider the complete elliptic integrals

$$
\begin{equation*}
I_{i}=\oint_{\gamma(h)} x^{i} y d x . \tag{3}
\end{equation*}
$$

It has been shown in [7], that if we restrict our attention to a one parameter deformation

$$
\lambda_{i}=\lambda_{i}(\varepsilon), \quad \nu=\nu(\varepsilon)
$$

then the first non-vanishing Poincaré-Pontryagin-Melnikov function M_{k} (governing the bifurcation of limit cycles) is given by a linear combination of the complete elliptic integrals of first and second kind $I_{0}, I_{2}, I_{4}^{\prime}$

$$
\begin{equation*}
M_{k}(h)=\lambda_{0 k} I_{0}(h)+\lambda_{2 k} I_{2}(h)+\lambda_{4 k} I_{4}^{\prime}(h) . \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/4615094

Download Persian Version:
https://daneshyari.com/article/4615094

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bassem.benhamed@gmail.com (B. Ben Hamed), ameni.gargouri@gmail.com (A. Gargouri), lubomir.gavrilov@math.univ-toulouse.fr (L. Gavrilov).

