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We prove that the covering radius of an N -point subset XN of the unit sphere Sd ⊂
Rd+1 is bounded above by a power of the worst-case error for equal weight cubature 
1
N

∑
x∈XN

f(x) ≈
∫
Sd

f dσd for functions in the Sobolev space Ws
p(Sd), where σd

denotes normalized area measure on Sd. These bounds are close to optimal when s
is close to d/p. Our study of the worst-case error along with results of Brandolini 
et al. motivate the definition of Quasi-Monte Carlo (QMC) design sequences for 
Ws

p(Sd), which have previously been introduced only in the Hilbert space setting 
p = 2. We say that a sequence (XN ) of N -point configurations is a QMC-design 
sequence for Ws

p(Sd) with s > d/p provided the worst-case equal weight cubature 
error for XN has order N−s/d as N → ∞, a property that holds, in particular, for 
a sequence of spherical t-designs in which each design has order td points. For the 
case p = 1, we deduce that any QMC-design sequence (XN ) for Ws

1(Sd) with s > d
has the optimal covering property; i.e., the covering radius of XN has order N−1/d

as N → ∞. A significant portion of our effort is devoted to the formulation of the 
worst-case error in terms of a Bessel kernel, and showing that this kernel satisfies 
a Bernstein type inequality involving the mesh ratio of XN . As a consequence we 
prove that any QMC-design sequence for Ws

p(Sd) is also a QMC-design sequence 
for Ws

p′ (Sd) for all 1 ≤ p < p′ ≤ ∞ and, furthermore, if (XN ) is a quasi-uniform 
QMC-design sequence for Ws

p(Sd), then it is also a QMC-design sequence for Ws′
p (Sd)

for all s > s′ > d/p.
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1. Introduction

In this paper we consider covering the unit sphere Sd in Rd+1, d ≥ 1, with equal sized spherical caps, 
and establish a connection to equal weight cubature formulas that use the centers of those caps as sampling 
points for the function. As a corollary, we will show that the optimal order of convergence of the worst-case 
equal weight cubature error for functions in a suitable Sobolev space implies asymptotically an optimal 
covering property by spherical caps.

Equal-weight numerical integration In the literature equal weight cubature is often given the name Quasi-
Monte Carlo (see Niederreiter [24] for the case of the unit cube). Thus a Quasi-Monte Carlo (QMC) method
is an equal weight numerical integration formula with deterministic node set in contrast to Monte Carlo 
methods: for a node set XN = {x1, . . . , xN} ⊂ Sd, the QMC method

Q[XN ](f) := 1
N

N∑
k=1

f(xk)

is a natural approximation of the integral

I(f) :=
∫
Sd

f(x)dσd(x)

of a given continuous real-valued function f on Sd with respect to the normalized surface area measure 
on Sd. A node set XN is deterministically chosen in a sensible way so as to guarantee “small” error of 
numerical integration for functions in suitable subfamilies of the class of continuous functions C(Sd).

A fundamental example of such node sets are spherical t-designs1 ZNt
⊂ Sd, t ≥ 1, introduced in [10]. 

They define QMC methods that integrate exactly all spherical polynomials of degree ≤ t:

Q[ZNt
](P ) = I(P ), degP ≤ t. (1.1)

Thus, spherical t-designs yield zero error on polynomial subfamilies of C(Sd). The definition of spherical 
t-designs says nothing about the number of points Nt that might be needed. A lower bound on Nt of order 
td was given in [10]. Recently, Bondarenko et al. [4] proved:

Proposition 1.1. There exists cd > 0 such that to every N ≥ cd t
d and t ≥ 1 there exists an N -point spherical 

t-design on Sd.

This key result ensures that spherical t-designs with Nt points of exactly the optimal order td exist for 
every t ≥ 1 (we write Nt � td). A sequence (ZNt

) of such designs with optimal order for the number of 
points has the remarkable property, see [8,14], that

|Q[ZNt
](f) − I(f)| ≤ cN

−s/d
t ‖f‖Hs

for all functions f in a Sobolev space Hs with smoothness index s > d/2 and norm ‖ · ‖Hs in the Hilbert 
space setting. The order of Nt cannot be improved, see [12,13]. This observation motivated the introduction 
of QMC-design sequences for Sobolev spaces Hs in [9]: these are sequences of N -point sets that have the 
same error behavior as spherical t-designs, but with no polynomial exactness requirement. One purpose of 
this paper is to provide the extension to general Sobolev spaces.

1 The symbol XN is used for general sets of N points on Sd, while ZNt
always refers to a spherical t-design with Nt points.
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