

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Basic and bibasic identities related to divisor functions

Victor J.W. Guo^{a,*}, Jiang Zeng^b

- ^a School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223300, People's Republic of China

 b Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS,
- 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

ARTICLE INFO

Article history: Received 7 September 2014 Available online 15 June 2015 Submitted by M.J. Schlosser

Keywords: Divisor functions Lambert series Prodinger's identity Uchimura's identity Dilcher's identity Carlitz's q-Eulerian polynomials

ABSTRACT

Using basic hypergeometric functions and partial fraction decomposition we give a new kind of generalization of identities due to Uchimura, Dilcher, Van Hamme, Prodinger, and Chen-Fu related to divisor functions. An identity relating Lambert series to Eulerian polynomials is also proved.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The divisor function $\sigma_m(n)$ for a natural number n is defined as the sum of the mth powers of the (positive) divisors of n, i.e., $\sigma_m(n) = \sum_{d|n} d^m$. Throughout this paper, we assume that |q| < 1. The generating function of $\sigma_m(n)$ has an explicit Lambert series expansion (see [5]):

$$\sum_{n=1}^{\infty} \sigma_m(n) q^n = \sum_{n=1}^{\infty} \frac{n^m q^n}{1 - q^n}.$$
 (1.1)

In 1981, Uchimura [24] rediscovered an identity due to Kluyver [19] (see also Dilcher [9]):

$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{q^{\binom{k+1}{2}}}{(q;q)_k (1-q^k)} = \sum_{k=1}^{\infty} \frac{q^k}{1-q^k},\tag{1.2}$$

E-mail addresses: jwguo1977@aliyun.com (V.J.W. Guo), zeng@math.univ-lyon1.fr (J. Zeng).

Corresponding author.

where $(a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})$ for $n \ge 0$. Since then, many authors have given different generalizations of (1.2) (see [2,4,9,11,12,14,16–18,21,22,24–26,28]). For example, Van Hamme [26] gave a finite form of (1.2) as follows:

$$\sum_{k=1}^{n} (-1)^{k-1} {n \brack k}_q \frac{q^{\binom{k+1}{2}}}{1-q^k} = \sum_{k=1}^{n} \frac{q^k}{1-q^k},\tag{1.3}$$

where the q-binomial coefficients $\begin{bmatrix} n \\ k \end{bmatrix}_q$ are defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}.$$

Uchimura [25] proved that

$$\sum_{k=1}^{n} (-1)^{k-1} {n \brack k}_q \frac{q^{\binom{k+1}{2}}}{1-q^{k+m}} = \sum_{k=1}^{n} \frac{q^k}{1-q^k} {k+m \brack m}_q^{-1}, \quad m \geqslant 0.$$
 (1.4)

Dilcher [9] established the following multiple series generalization of (4.8):

$$\sum_{k=1}^{n} (-1)^{k-1} {n \brack k}_q \frac{q^{\binom{k}{2} + km}}{(1 - q^k)^m} = \sum_{1 \le k_1 \le \dots \le k_m \le n} \frac{q^{k_1 + \dots + k_m}}{(1 - q^{k_1}) \cdots (1 - q^{k_m})}. \tag{1.5}$$

Prodinger [21] proved that

$$\sum_{\substack{k=0\\k\neq m}}^{n} (-1)^{k-1} {n\brack k}_q \frac{q^{\binom{k+1}{2}}}{1-q^{k-m}} = (-1)^m q^{\binom{m+1}{2}} {n\brack m}_q \sum_{\substack{k=0\\k\neq m}}^{n} \frac{q^{k-m}}{1-q^{k-m}}, \quad 0\leqslant m\leqslant n. \tag{1.6}$$

Using partial fraction decomposition the second author [28, (7)] obtained the following common generalization of Dilcher's identity (1.5) and of some identities due to Fu and Lascoux [11,12]:

$$\sum_{k=i}^{n} (-1)^{k-i} \begin{bmatrix} n \\ k \end{bmatrix}_{q} \begin{bmatrix} k \\ i \end{bmatrix}_{q} \frac{q^{\binom{k-i}{2} + km}}{(1 - zq^{k})^{m}} = \frac{q^{i}(q;q)_{i-1}(q;q)_{n}}{(q;q)_{i}(zq;q)_{n}} h_{m-1} \left(\frac{q^{i}}{1 - zq^{i}}, \dots, \frac{q^{n}}{1 - zq^{n}} \right), \tag{1.7}$$

where $1 \leq i \leq n$ and $h_k(x_1, \ldots, x_n)$ is the k-th homogeneous symmetric polynomial in x_1, \ldots, x_n defined by

$$h_k(x_1,\ldots,x_n) = \sum_{1 \leqslant i_1 \leqslant \cdots \leqslant i_k \leqslant n} x_{i_1} \cdots x_{i_k} = \sum_{\alpha_1 + \cdots + \alpha_n = k} x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

We note that Ismail and Stanton [18, Theorem 2.2] have rediscovered the i = 1 case of (1.7) as well as some other results in [28].

In this paper we shall give a different kind of generalizations of (1.4)–(1.6). Our starting point is an identity of Chen and Fu [8, (3.3)], which corresponds to the (r, x) = (0, 1) case of the following result.

Theorem 1.1. Let $m, n \ge 0$ and $0 \le r \le m$. Then

$$\sum_{k=0}^{m} \frac{(-1)^k p^{\binom{k+1}{2}-rk}}{(p;p)_k(p;p)_{m-k}(xp^k;q)_{n+1}} = x^r \sum_{k=0}^{n} \frac{(-1)^k q^{\binom{k+1}{2}+rk}}{(q;q)_k(q;q)_{n-k}(xq^k;p)_{m+1}}.$$
 (1.8)

Download English Version:

https://daneshyari.com/en/article/4615133

Download Persian Version:

https://daneshyari.com/article/4615133

<u>Daneshyari.com</u>