

A unified approach for the Hankel determinants of classical combinatorial numbers

Mohamed Elouafi

Classes Préparatoites aux Grandes Ecoles d'Ingénieurs, Lycée My Alhassan, Tangier, Morocco

A R T I C L E I N F O

Article history:

Received 28 March 2015
Available online 25 June 2015
Submitted by J.A. Ball

Keywords:

Hankel determinant
Orthogonal polynomials
Chebyshev polynomials
Catalan numbers
Motzkin numbers
Schröder numbers

Abstract

We give a general formula for the determinants of a class of Hankel matrices which arise in combinatorics theory. We revisit and extend existent results on Hankel determinants involving the sum of consecutive Catalan, Motzkin and Schröder numbers and we prove a conjecture of [10] about the recurrence relations satisfied by the Hankel transform of linear combinations of Catalans numbers.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $a=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ denote a sequence of numbers. The $n \times n$ matrix

$$
\mathcal{H}_{n}(a)=\left(a_{i+j}\right)_{0 \leq i, j \leq n-1}
$$

is called Hankel matrix. If $h_{n}=\operatorname{det}\left(\mathcal{H}_{n}(a)\right)$, then the sequence $\left\{h_{n}\right\}_{n \geq 0}$ is referenced as the Hankel transform of the sequence a and was widely investigated in numerous papers. Hankel determinants are particularly interesting when applied to classical combinatorial sequences arising from the lattice path enumerations and have attracted an increasing amount of attention recently [1,2,5,7,23,24]. One of the most popular themes in this context is to consider the determinant of the Hankel matrix generated by the sequence that is linear combinations of the sequences $\left\{a_{n}\right\}$ where $a_{n}=C_{n}, M_{n}$ and R_{n} are Catalan, Motzkin or Schröder numbers respectively. For instance, Hankel determinant evaluations such as

$$
\begin{aligned}
& \operatorname{det}\left(\left(C_{i+j}\right)_{0 \leq i, j \leq n-1}\right)=1, \\
& \operatorname{det}\left(\left(M_{i+j}\right)_{0 \leq i, j \leq n-1}\right)=1, \\
& \operatorname{det}\left(\left(R_{i+j}\right)_{0 \leq i, j \leq n-1}\right)=2^{\left({ }_{2}^{n}\right)},
\end{aligned}
$$

[^0]or these involving consecutive terms have been addressed numerous times in the literature. Among the method employed to prove such formulae we cite the combinatorial methods based on the Lindström-Gessel-Viennot lemma on non-intersecting lattice paths and orthogonal polynomials. The reader is referred to Krattenthaler papers [16,17].

In this paper, our main focus is an overall generalization of these results. We evaluate $\operatorname{det}\left(\mathcal{H}_{n}(b)\right)$ for $b=\left\{b_{n}\right\}$ of the form

$$
b_{n}=\sum_{k=0}^{r} \lambda_{k} a_{n+k},
$$

where $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{r-1}, \lambda_{r}, r \geq 1$, are complex numbers such that $\lambda_{r}=1$. We shall assume that $\operatorname{det}\left(\left(a_{i+j}\right)_{0 \leq i, j \leq n-1}\right) \neq 0$ for all $n \geq 0$ and we denote by \mathcal{L} the linear functional on the vector space of all polynomials defined by

$$
\mathcal{L}\left(x^{n}\right)=a_{n} \text { for } n=0,1, \ldots
$$

With $\left\{a_{n}\right\}$ we associate the monic orthogonal polynomial sequence $\left\{p_{n}(x)\right\}_{n \in \mathbb{N}}[6]$ such that p_{n} is monic of degree n and

$$
\mathcal{L}\left(p_{n} p_{m}\right)=0 \text { for } n \neq m .
$$

We remark that $b_{n}=\sum_{k=0}^{r} \lambda_{k} a_{n+k}=\mathcal{L}\left(x^{n} q\right)$, where

$$
q(x)=x^{r}+\lambda_{r-1} x^{r-1}+\ldots+\lambda_{0} .
$$

The r-kernel $\mathcal{K}_{n, P}^{(r)}$ of $P=\left\{p_{n}\right\}_{n \in \mathbb{N}}$ is defined by

$$
\mathcal{K}_{n, P}^{(r)}\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\frac{\operatorname{det}\left(\left(p_{n+i-1}\left(x_{j}\right)\right)_{1 \leq i, j \leq r}\right)}{\prod_{1 \leq i<j \leq r}\left(x_{j}-x_{i}\right)}
$$

for $r \geq 2$ and $\mathcal{K}_{n, P}^{(1)}(x)=p_{n}(x)$. As it will be shown latter, $\mathcal{K}_{n, P}^{(r)}\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is a polynomial of the variables x_{1}, x_{2}, \ldots and x_{r}.

The following theorem constitutes our main result:
Theorem 1. We have

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{H}_{n}(b)\right)=(-1)^{n r} \operatorname{det}\left(\mathcal{H}_{n}(a)\right) \mathcal{K}_{n, P}^{(r)}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right), \tag{1.1}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ are the zeros of q.
In most examples considered in the existing literature, b_{n} has a specific pattern. Namely

$$
b_{n}=a_{n+r}-c a_{n+r-1}, \text { with } c \in \mathbb{C} \text {. }
$$

Theorem 2. We have for $c \neq 0$:

https://daneshyari.com/en/article/4615136

Download Persian Version:

https://daneshyari.com/article/4615136

Daneshyari.com

[^0]: E-mail address: med3elouafi@gmail.com.
 http://dx.doi.org/10.1016/j.jmaa.2015.06.034
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

