
Address independent estimation of the boundaries of cache performance

Diego Andrade ⇑, Basilio B. Fraguela, Ramón Doallo
Dept. of Electronics and Systems, University of A Coruña, Spain

a r t i c l e i n f o

Article history:
Available online 14 January 2014

Keywords:
Real-time systems
BCET
WCET
Cache memory

a b s t r a c t

Worst-case (WCET) and best-case (BCET) execution times must be estimated in real-time systems.
Worst-case memory performance (WCMP) and best-case memory performance (BCMP) components
are essential to estimate them. These components are difficult to calculate in the presence of data caches,
since the data cache performance depends largely on the sequence of memory addresses accessed. These
addresses may be unknown because the base address of a data structure is unavailable for the analysis or
it may change between different executions. This paper introduces a model that provides fast and tight
valid estimations of the BCMP, despite ignoring the base address of the data structures. The model pre-
sented here, in conjunction with an existing model that estimates the WCMP, can provide base-address
independent estimations of the BCMP and WCMP. The experimental results show that the base addresses
of the data structures have a large influence in the cache performance, and that the model estimations of
the boundaries of the memory performance are valid for any base addresses of the data structures.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Execution time must be bounded [1] in real-time systems.
Namely, the worst-case execution time (WCET) estimates an upper
limit of the execution time of a task and it may be used to perform
any schedulability analysis, to ensure meeting deadlines and to as-
sess resource needs for real-time systems. The best-case execution
time (BCET) estimates the lower limit and it may be used to assess
code quality and resource needs for non- or soft real-time systems,
and to ensure that live lines and minimum sampling intervals are
met. The presence of data caches [2] complicates the estimation of
the memory performance components of the WCET and the BCET,
which are the worst-case (WCMP) and best-case memory perfor-
mance (BCMP), respectively. The reason is that the memory perfor-
mance in the presence of caches depends largely on the exact
sequence of memory addresses accessed by the program, and these
addresses determine the placement of each piece of data in the
cache. This sequence may be unavailable at compile-time due to
the lack of the base address information of the data structures
and/or the presence of irregular access patterns. The base ad-
dresses may also not be obtainable because of the usage of pro-
gram modules or libraries compiled separately, stack variables or
dynamically allocated memory. Furthermore, these addresses
may change between different executions of the program.

The model presented in [3] is, to our knowledge, the only one to
tackle a base address-independent prediction of the WCMP in the

presence of data caches. It is based on the probabilistic miss equa-
tions (PME) model [4] and it can estimate rapidly and precisely the
WCMP of codes with strided accesses (regular codes). This paper
complements [3] with the ability to provide base address indepen-
dent predictions of the BCMP. This would turn the model, if inte-
grated with a CPU model, into a powerful tool to perform
statically a thorough timing analysis.

The rest of this paper is organized as follows. Section 2 de-
scribes the basics of the PME model and its scope of application.
The following two sections explain the changes required to esti-
mate the BCMP. Namely, Sections 3 and 4 contain the core contri-
bution of the paper as they are devoted to describe the method to
calculate the BCMP. Section 5 highlights the main differences be-
tween the BCMP approach presented in this paper, and the WCMP
approach presented in [3]. Then, Section 6 shows some experimen-
tal results, Section 7 is devoted to the related work and Section 8
concludes.

2. The probabilistic miss equations model

The probabilistic miss equation (PME) model [4] predicts the
behavior of set-associative caches following a Least Recently Used
(LRU) replacement policy. Before the model is introduced, let us
start with some notions on cache memories. Caches are associative
memories [5], located in the top levels of the memory hierarchy,
that contain a subset of the data present in the lower levels and
that are searched by the memory address provided by the proces-
sor. Caches are divided into cache lines, a line corresponding to the
minimum amount of information that can be placed in the cache.

0141-9331/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2014.01.001

⇑ Corresponding author. Tel.: +34 981 167 000x1298; fax: +34 981 167 160.
E-mail addresses: diego.andrade@udc.es (D. Andrade), basilio.fraguela@udc.es

(B.B. Fraguela), doallo@udc.es (R. Doallo).

Microprocessors and Microsystems 38 (2014) 137–151

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.01.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.01.001
mailto:diego.andrade@udc.es
mailto:basilio.fraguela@udc.es
mailto:doallo@udc.es
http://dx.doi.org/10.1016/j.micpro.2014.01.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


Cache lines are grouped in cache sets, each set having the same
number of lines, which is called the cache associativity. Under a
CPU request only the lines in a set are searched. Also, a line can
only be placed in a predetermined set, although any of the set lines
is eligible for its placement.

The basic operation of a cache memory starts with the processor
emitting a memory address, which may need to be translated into
a physical address before accessing the cache if we consider a sys-
tem with virtual memory and a physically-indexed cache. A part of
this memory address, called index, is used to select the cache set
where the cache line containing the requested address should be
located. Another part of the address, called tag, is used to find
out if the line is in the cache set. If it is present, the access turns
into a cache hit. Then the cache retrieves the data associated to
the address requested inside the line using another part of the ad-
dress called displacement and it sends this data item to the proces-
sor. If the line is not present, the access turns into a miss and the
data must be brought from the lower levels of the memory hierar-
chy to the corresponding cache set. Then, the access is treated as a
hit.

When a new line is loaded into its corresponding cache set, the
cache set may be full. In that case, one of the lines of the cache set
must be replaced by the new line. The selection of which line is
replaced is taken by the replacement policy. The most popular
replacement policy is the Least Recently Used (LRU) one, that
selects the line that has not been accessed for a longer time.

The PME model estimates the number of cache misses gener-
ated by the execution of a code. The model processes the static ref-
erences of the analyzed code one by one. For each reference and
each nesting level containing it, a separated probabilistic miss
equation (PME) is generated. Each static reference generates sev-
eral dynamic accesses. Each access affects one data item which is
located in a given memory line. This access can result in a cache
hit if the line is already loaded in the cache or a miss otherwise.
Cache misses take place compulsorily the first time a memory line
is accessed. The remaining accesses to memory lines are reuse at-
tempts, given that a preceding access already loaded the line of
interest in the cache. A reuse attempt on a memory line results
in a miss if the lines brought to the cache during the reuse distance
have evicted the line. This eviction happens with a given probabil-
ity, called miss probability, which depends on the reuse distance. A
PME formula classifies the accesses generated by the reference it
models within the considered loop according to their reuse dis-
tance and computes the miss probability associated to each one
of the reuse distances found. Then, this PME estimates the number
of misses generated by the reference in the loop by adding the
number of accesses with each given reuse distance weighted by
their associated miss probability.

FRiðRDinputÞ ¼ NAccðRDinputÞ �MissPðRDinputÞ þ
XNRD

i¼1

NAccðRDiÞ

�MissPðRDiÞ ð1Þ

Eq. 1 represents the general form of the PME associated to reference
R and nesting level i. NRD is the number of different reuse distances
found. NAccðRDÞ is the number of accesses generated by reference R
whose reuse distance is RD and MissPðRDÞ is the miss probability
associated to that reuse distance. The PME also considers the
first-time accesses of R to lines during one execution of the loop.
While these accesses cannot exploit a RD within the loop, they
may enjoy reuse with respect to accesses to the same line which
took place in previous iterations of outer or preceding loop nests.
Since such RDs cannot be found in the analysis of loop i, every
PME FRi has an input. The number of misses generated by these
accesses is accounted by the first term of the formula.

Example 2.1. Let us consider a simple code like the following

for (ind = 0; ind < 16; ind++) {
a[ind] = b[ind];

}

and a direct-mapped cache that can store 16 elements of any of
both arrays which is divided into 4 lines that can store 4 elements
of the arrays each. Fig. 1 contains a control flow of the accesses gen-
erated by the example code. Let us assume that scalar accesses are
usually mapped to processor registers, even if it is not the case, that
is a reasonable best-case assumption. Thus, only the accesses to
arrays a and b have an impact on the cache.

Let us see how Eq. 1 applies to the modeling of reference
R � a½ind� in the scope of this loop at nesting level i = 0. Fig. 2
represents the positions of a accessed through this reference.
Accesses to positions located in the same cache line are grouped
and, first-time accesses, reuse attempts and reuse distances are
identified. The first position of the array a[0] is located at the
beginning of one line, thus, the loop accesses exactly 16/4 = 4
different cache lines. So, NAccðRDinputÞ ¼ 4 because 4 accesses visit
a line for the first time in this loop and its associated reuse distance
is RDinput, which is the RD for the first-time accesses of R in the
loop. The remaining 12 iterations are reuse attempts of a line
accessed in a previous iteration of the loop. In fact since the access
is sequential, the reuse attempts always take place on the
immediately previous iteration of the loop. So, all the reuse
attempts are associated to a single reuse distance, thus, NRD ¼ 1.
This reuse distance RD0 is concretely one iteration of the loop 0
we are considering, denoted as Iter0(1). This way,
FR0ðRDinputÞ ¼ 4�MissPðRDinputÞ þ 12�MissPðRD0Þ.

The example can be completed intuitively although the method
to calculate the miss probability associated to a given reuse
distance has not been explained yet. If the lines from array a have
not been accessed in a previous loop, the miss probability
associated to the RDinput reuse distance is 1, which means that
these NAccðRDinputÞ ¼ 4 accesses turn into misses. Regarding the 12
accesses with reuse distance RD0 ¼ Iter0ð1Þ, during one iteration of
the loop one line from array a and one line from array b are
accessed. The line from a is the reused line, so it does not interfere
with itself. The line from b is going to be placed in one of the 4 sets
of the cache, each one of them consisting of a single line. If it is
placed in the same set as the reused line from a, it will eject it from
the cache; otherwise there will be no interference. This way on

If ind < 16

access ind

access b[ind]

access a[ind]

access ind

Yes

No END

BEGIN

Fig. 1. Control flow of the accesses of Example 2.1.

138 D. Andrade et al. / Microprocessors and Microsystems 38 (2014) 137–151



Download English Version:

https://daneshyari.com/en/article/461514

Download Persian Version:

https://daneshyari.com/article/461514

Daneshyari.com

https://daneshyari.com/en/article/461514
https://daneshyari.com/article/461514
https://daneshyari.com

