Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Rearranging series of vectors on a small set

Paweł Klinga

Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

ARTICLE INFO

Article history: Received 10 May 2014 Available online 26 November 2014 Submitted by B. Bongiorno

Keywords: Lévy–Steinitz theorem Riemann's theorem Rearrangement of terms Conditionally convergent series Summable ideals Lévy vectors ABSTRACT

We consider a variation of the Lévy–Steinitz theorem where one rearranges only a small number of terms. In particular, we study the set of obtainable rearrangements of a multidimensional series by a permutation $\sigma : \omega \to \omega$ such that $\{n \in \omega : \sigma(n) \neq n\} \in \mathcal{I}$ for some proper ideal $\mathcal{I} \subset \mathcal{P}(\omega)$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The classic theorem of Riemann [5] states that for any conditionally convergent series of reals $\sum_{n \in \omega} a_n$ and any real number *a* there exists a permutation of terms σ such that $\sum_{n \in \omega} a_{\sigma(n)} = a$.

In [8] Wilczyński strengthened the result, adding that we can take the permutation such that $\{n \in \omega : \sigma(n) \neq n\} \in \mathcal{I}_d$, where \mathcal{I}_d denotes the ideal of sets of asymptotic density zero. One might say that this means that the permutation changes only a small number of terms. In the same paper Wilczyński asked what other ideals can be put in the place of \mathcal{I}_d . This question was answered by Filipów and Szuca in [1], where they proved that those ideals are exactly the ones which cannot be extended to a summable ideal.

Riemann's theorem has been generalized to a multidimensional case by Lévy [4] and Steinitz [7].

In this paper we consider an approach similar to the one-dimensional case, i.e. we study the sets of those points in a multidimensional Euclidean space which are obtained by rearranging a small amount of the series' terms. While the original Lévy–Steinitz theorem works for \mathbb{R}^m , where *m* is any positive natural, we decided to focus solely on the case m = 2 (i.e. the plane). We divided this into two parts – in Section 3 we work on a situation where the set of obtainable sums is a line on the plane, while in Section 4 it is the entire plane (which turned out to be a much more delicate counterpart).

CrossMark

E-mail address: pklinga@mat.ug.edu.pl.

2. Preliminaries

By ω we denote the set of natural numbers, and by $\mathcal{P}(\omega)$ its powerset. An ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ is a family which is closed under taking subsets and finite unions. If $\omega \notin \mathcal{I}$ then an ideal is proper. In this paper we will assume that all ideals are proper.

We will use the following notation: $a^+ = \max\{a, 0\}, a^- = \min\{a, 0\}.$

Definition 2.1. Let $(v_n)_{n \in \omega}$ be a sequence in \mathbb{R}^m , $m \in \{1, 2, 3, ...\}$.

$$S\bigg(\sum_{n\in\omega}v_n\bigg)=\bigg\{v\in\mathbb{R}^m:\exists_{\sigma:\omega\to\omega}\ \sigma\text{ - permutation},\ \sum_{n\in\omega}v_{\sigma(n)}=v\bigg\}.$$

Using this notation we can formulate Riemann's derangement theorem in the following way.

Theorem 2.2. (See [5].) Let $\sum_{n \in \omega} a_n$ be a conditionally convergent series of reals. Then

$$S\bigg(\sum_{n\in\omega}a_n\bigg)=\mathbb{R}.$$

By $supp(\sigma)$ we'll denote the support of the permutation σ , that is the set $\{n \in \omega : \sigma(n) \neq n\}$.

Definition 2.3. Let $(v_n)_{n \in \omega}$ be a sequence in \mathbb{R}^m , $m \in \{1, 2, 3, ...\}$. Also let $\mathcal{I} \subset \mathcal{P}(\omega)$ be an ideal.

$$S_{\mathcal{I}}\left(\sum_{n\in\omega}v_n\right) = \bigg\{v\in\mathbb{R}^m: \exists_{\sigma:\omega\to\omega} \ \sigma - \text{permutation}, \ \sum_{n\in\omega}v_{\sigma(n)} = v, supp(\sigma)\in\mathcal{I}\bigg\}.$$

Recall the definition of the ideal of sets of asymptotic density zero.

$$\mathcal{I}_d = \left\{ A \subset \omega : \limsup_{n \to \infty} \frac{|\{0, 1, \dots, n-1\} \cap A|}{n} = 0 \right\}.$$

Theorem 2.4. (See [8].) Let $\sum_{n \in \omega} a_n$ be a conditionally convergent series of reals. Then

$$S_{\mathcal{I}_d}\left(\sum_{n\in\omega}a_n\right) = \mathbb{R}.$$

We will say that an ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ has the (W) property if for any conditionally convergent series of reals $\sum_{n \in \omega} a_n$ there exists $W \in \mathcal{I}$ such that $\sum_{n \in W} a_n$ is also conditionally convergent. Additionally, we will say that an ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ has the (R) property if for any conditionally convergent series of reals $\sum_{n \in \omega} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \omega \to \omega$ such that $\sum_{n \in \omega} a_{\sigma(n)} = a$ and $supp(\sigma) \in \mathcal{I}$.

Hence we can express Theorem 2.4 by saying that \mathcal{I}_d has the (R) property. In [8] Wilczyński asked to find a full characterization of ideals fulfilling this property. This question was answered by Filipów and Szuca [1].

First, recall the definition of the summable ideals. Let $(a_n)_{n \in \omega}$ be such sequence of reals that $a_n \ge 0$, $n \in \omega$, $a_n \to 0$ and $\sum_{n \in \omega} a_n = +\infty$. The family

$$\mathcal{I}_{a_n} = \left\{ A \subset \omega : \sum_{n \in A} a_n < \infty \right\}$$

is an ideal which we call the summable ideal (determined by the sequence a_n).

Download English Version:

https://daneshyari.com/en/article/4615150

Download Persian Version:

https://daneshyari.com/article/4615150

Daneshyari.com