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We present a finite element scheme capable of preserving the nonnegative and 
bounded solutions of the generalized Burgers–Huxley equation. Proofs of existence 
and uniqueness of a solution to the continuous problem together with some results 
concerning the boundedness and the nonnegativity of the solution are given. Under 
appropriate conditions on the mesh and the initial and boundary data, boundedness 
and nonnegativity of the finite element approximation are established. An a priori
error estimate for the approximation is also derived. Numerical experiments are 
presented which support the derived theoretical results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The class of advection–diffusion–reaction problems has been used extensively to model different physical 
processes such as atmospheric air quality [20], the mobility of fish populations [27], nuclear waste disposal 
[14], pattern formation [23] and the reactive transport of contaminants [16]. An important member of this 
class and the object of study in this paper is the generalized Burgers–Huxley equation, which has found 
application in biology [28], electrodynamics [29] and transport phenomena [1]. For Ω ⊂ R

2, the nonlinear 
partial differential equation under consideration is:

∂u

∂t
+ αup

(
∂u

∂x
+ ∂u

∂y

)
− Δu− ug(u) = 0, (x, t) ∈ Ω × (0, T ), (1)

where α ∈ R
+ is the advection coefficient, γ ∈ (0, 1), p ≥ 1 are parameters and

g(u) = β
(
1 − up

)(
up − γ

)
, β > 0. (2)
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The numerical approximation in 1D of (1) using a variety of techniques has received considerable attention. 
One approach is the Adomian decomposition [15] which needs no discretization, linearization or perturba-
tion, and provides an analytical solution in the form of a power series using Adomian polynomials. A second 
approach, which can be classified as a Lagrange multiplier method, is the variational iteration method 
(VIM) [2]. This technique uses a linearizion assumption as an initial approximation and later, through a 
correction functional, the approximation is made more precise. Results have shown that in some cases one 
iteration of VIM is of comparable accuracy to a 5-term Adomian solution. A third approach which belongs 
to the class of interpolation techniques is the spectral collocation method (SC) [7]. Using Chebyshev–
Gauss–Lobatto collocation points, an interpolant polynomial is constructed and a differential operator in 
terms of the grid point values is computed. The matrices that appear in SC are generally ill-conditioned 
and some preconditioning is required. A fourth approach is the use of Haar wavelets [4]. The procedure 
relies on the decomposition of an L2([a, b]) function in terms of the orthogonal Haar basis. The matrices 
that arise in the computations are sparse and the accuracy is in general high even with few collocation 
points. A fifth approach is finite differences [26], where a Runge–Kutta method of order 4 is used in time 
and coupled with a 10-th order finite difference scheme in space. A final example of approximation meth-
ods investigated in 1D is the finite element method [19], where a three-step Taylor–Galerkin finite element 
scheme is implemented to approximate a problem with the diffusion term being multiplied by a perturbation 
parameter ε.

Of interest is the design of numerical methods capable of preserving the nonnegative and bounded 
solutions of (1). Among all the aforementioned methods, only finite differences and finite element methods 
have been successful in being able to supply proofs for the conservation of those properties. Works in this 
direction in the case of finite differences include [21,22,25]. If we restrict ourselves to the smaller class of 
linear parabolic problems of the form ut − ∇ · (κ∇u) = f , where κ satisfies 0 < κmin ≤ κ(x) ≤ κmax and 
f is bounded, for finite differences and finite element the (discrete) nonnegativity preservation property is 
equivalent to the (discrete) maximum principle, a bridge that was established in [10]. Some articles on finite 
elements concerning maximum principles for advection–reaction–diffusion problems are [6,9,11,18].

In this document we propose a finite element scheme capable of preserving the nonnegative and bounded 
solutions of (1) under suitable conditions for the computational parameters Δt, h, and on the triangulation 
Th of the region Ω. In Section 2 we establish a result concerning the existence and uniqueness of a solution 
to the continuous problem (1). Moreover, we prove that for certain initial and boundary conditions, any 
classical solution to (1) satisfies certain boundedness conditions. Then, in Section 3, we state the weak 
formulation and prove the boundedness of the solution in this setting. The discrete weak formulation is 
introduced in Section 4 and therein we show the computability of the scheme and state parallel results 
to the ones derived for the continuous problem. In Section 5 we provide an a priori error estimate which 
guarantees that the method is of the first order accurate, with respect to the space and time discretizations. 
Finally, in Section 6, numerical experiments are presented which support our theoretical results.

2. Continuous problem

In this section we establish the existence of a solution to (1) for some time interval of positive length 
[0, T0]. Then, we show that under suitable boundary and initial conditions, the solution u is nonnegative 
and bounded.

Before we state our first result, we introduce the following definition.

Definition 1. The real valued function F (x, t, z1, . . . , zr), F : Ω × R
+ ∪ {0} × R

r → R, with Ω ⊂ R
2, is 

locally Hölder continuous with respect to (x, t) if for all B ⊂ Ω × [0, T ], B compact, there exist a constant 
C > 0 and 0 < κ < 1 such that
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