

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Sup–Inf explicit formulas for minimal Lipschitz extensions for 1-fields on \mathbb{R}^n

Erwan Y. Le Gruyer*, Thanh Viet Phan

INSA de Rennes & IRMAR, 20, Avenue des Buttes de Coësmes, CS 70839, F-35708 Rennes Cedex 7, France

ARTICLE INFO

Article history: Received 1 July 2014 Available online 3 December 2014 Submitted by H. Frankowska

Keywords:
Minimal
Lipschitz
Extension
Differentiable function
Convex analysis

ABSTRACT

We study the relationship between the Lipschitz constant of 1-field introduced in [12] and the Lipschitz constant of the gradient canonically associated with this 1-field. Moreover, we produce two explicit formulas which are two extremal minimal Lipschitz extensions for 1-fields. As a consequence of the previous results, for the problem of minimal extension by Lipschitz continuous functions from \mathbb{R}^m to \mathbb{R}^n , we produce explicit formulas similar to those of Bauschke and Wang (see [7]). Finally, we show that Wells's extensions (see [24]) of 1-fields are absolutely minimal Lipschitz extensions when the domain of 1-field to expand is finite. We provide a counter-example showing that this result is false in general.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a subset of Euclidean space \mathbb{R}^n . We suppose that Ω has at least two elements. Let $\mathscr{P}^1(\mathbb{R}^n,\mathbb{R})$ be the set of first degree polynomials mapping \mathbb{R}^n to \mathbb{R} , i.e.

$$\mathscr{P}^1\big(\mathbb{R}^n,\mathbb{R}\big) \triangleq \big\{P: a \in \mathbb{R}^n \mapsto P(a) = p + \langle v, a \rangle, \ p \in \mathbb{R}, \ v \in \mathbb{R}^n \big\}.$$

Let us consider a 1-field F on domain $dom(F) \triangleq \Omega$ defined by

$$F: \Omega \to \mathscr{P}^1(\mathbb{R}^n, \mathbb{R})$$
$$x \mapsto F(x)(a) \triangleq f_x + \langle D_x f; a - x \rangle, \tag{1}$$

where $a \in \mathbb{R}^n$ is the evaluation variable of the polynomial F(x) and $f: x \in \Omega \mapsto f_x \in \mathbb{R}$, $Df: x \in \Omega \mapsto D_x f \in \mathbb{R}^n$ are mappings associated with F. We will always use capital letters to denote the 1-field and small letters to denote these mappings.

E-mail addresses: Erwan.Le-Gruyer@insa-rennes.fr (E.Y. Le Gruyer), Thanh-Viet.Phan@insa-rennes.fr (T.V. Phan).

^{*} Corresponding author.

The Lipschitz constant of F introduced in [12] is

$$\Gamma^{1}(F;\Omega) \triangleq \sup_{\substack{x,y \in \Omega \\ x \neq y}} \Gamma^{1}(F;x,y), \tag{2}$$

where

$$\Gamma^{1}(F; x, y) \triangleq 2 \sup_{a \in \mathbb{R}^{n}} \frac{|F(x)(a) - F(y)(a)|}{\|x - a\|^{2} + \|y - a\|^{2}}.$$
 (3)

If $\Gamma^1(F;\Omega) < +\infty$, then the Whitney conditions [26], or Glaeser in [10] are satisfied and the 1-field F can be extended on \mathbb{R}^n : there exists $g \in \mathscr{C}^{1,1}(\mathbb{R}^n,\mathbb{R})$ such that $g(x) = f_x$ and $\nabla g(x) = D_x f$ for all $x \in \Omega$ where ∇g is the usual gradient. Moreover, from [12, Theorem 2.6] we can find g which satisfies

$$\Gamma^1(G; \mathbb{R}^n) = \Gamma^1(F; \Omega),$$

where G is the 1-field associated to g, i.e.

$$G(x)(y) = g(x) + \langle \nabla g(x), y - x \rangle, \quad x \in \Omega, \ y \in \mathbb{R}^n.$$

It means that the Lipschitz constant does not increase when extending F by G. We say that G is a minimal Lipschitz extension (MLE for short) of F and we have

$$\Gamma^1(G; \mathbb{R}^n) = \inf \{ \operatorname{Lip}(\nabla h; \mathbb{R}^n) : h(x) = f_x, \ \nabla h(x) = D_x f, \ x \in \Omega, \ h \in \mathscr{C}^{1,1}(\mathbb{R}^n, \mathbb{R}) \},$$

where the notation Lip(u; .) means that

$$\operatorname{Lip}(u; x, y) \triangleq \frac{\|u(x) - u(y)\|}{\|x - y\|}, \quad x, y \in \Omega, \ x \neq y, \quad \text{and} \quad \operatorname{Lip}(u; \Omega) \triangleq \sup_{x \neq y \in \Omega} \operatorname{Lip}(u; x, y). \tag{4}$$

It is worth asking what is it the relationship between $\Gamma^1(F;\Omega)$ and $\operatorname{Lip}(Df;\Omega)$? From [12], we know that $\operatorname{Lip}(Df;\Omega) \leq \Gamma^1(F;\Omega)$. In the special case $\Omega = \mathbb{R}^n$ we have $\operatorname{Lip}(Df;\mathbb{R}^n) = \Gamma^1(F;\mathbb{R}^n)$ but in general the formula $\operatorname{Lip}(Df;\Omega) = \Gamma^1(F;\Omega)$ is untrue. In this paper we will prove that if Ω is an open subset of \mathbb{R}^n then

$$\Gamma^{1}(F;\Omega) = \max \{ \Gamma^{1}(F;\partial\Omega), \operatorname{Lip}(Df;\Omega) \}, \tag{5}$$

where $\partial \Omega$ is a boundary of Ω . Moreover, if Ω is a convex subset of \mathbb{R}^n then

$$\Gamma^1(F;\Omega) \le 2\operatorname{Lip}(Df;\Omega).$$
 (6)

To make the connection between $\Gamma^1(F;\Omega)$ and $\operatorname{Lip}(Df;\Omega)$, it is important to know the set of uniqueness of minimal extensions of F when Ω has two elements (this study was performed in [14]). Indeed, many results of Section 3 use this knowledge. For further more details see Section 3.

In Section 4, we present two MLEs U^+ and U^- of F of the form

$$U^{+}: x \in \mathbb{R}^{n} \mapsto U^{+}(x)(y) \triangleq u^{+}(x) + \langle D_{x}u^{+}; y - x \rangle, \quad y \in \mathbb{R}^{n},$$

$$(7)$$

where

$$u^{+}(x) \triangleq \sup_{v \in \Lambda_{x}} \inf_{a \in \Omega} \Psi^{+}(F, x, a, v), \qquad D_{x}u^{+} \triangleq \arg \sup_{v \in \Lambda_{x}} \inf_{a \in \Omega} \Psi^{+}(F, x, a, v), \tag{8}$$

Download English Version:

https://daneshyari.com/en/article/4615160

Download Persian Version:

https://daneshyari.com/article/4615160

Daneshyari.com