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We study the relationship between the Lipschitz constant of 1-field introduced in 
[12] and the Lipschitz constant of the gradient canonically associated with this 
1-field. Moreover, we produce two explicit formulas which are two extremal minimal 
Lipschitz extensions for 1-fields. As a consequence of the previous results, for the 
problem of minimal extension by Lipschitz continuous functions from Rm to Rn, we 
produce explicit formulas similar to those of Bauschke and Wang (see [7]). Finally, 
we show that Wells’s extensions (see [24]) of 1-fields are absolutely minimal Lipschitz 
extensions when the domain of 1-field to expand is finite. We provide a counter-
example showing that this result is false in general.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a subset of Euclidean space Rn. We suppose that Ω has at least two elements. Let P1(Rn, R)
be the set of first degree polynomials mapping Rn to R, i.e.

P1(
R

n,R
)
�

{
P : a ∈ R

n �→ P (a) = p + 〈v, a〉, p ∈ R, v ∈ R
n
}
.

Let us consider a 1-field F on domain dom(F ) � Ω defined by

F : Ω → P1(
R

n,R
)

x �→ F (x)(a) � fx + 〈Dxf ; a− x〉, (1)

where a ∈ R
n is the evaluation variable of the polynomial F (x) and f : x ∈ Ω �→ fx ∈ R, Df : x ∈ Ω �→

Dxf ∈ R
n are mappings associated with F . We will always use capital letters to denote the 1-field and 

small letters to denote these mappings.
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The Lipschitz constant of F introduced in [12] is

Γ 1(F ;Ω) � sup
x,y∈Ω
x�=y

Γ 1(F ;x, y), (2)

where

Γ 1(F ;x, y) � 2 sup
a∈Rn

|F (x)(a) − F (y)(a)|
‖x− a‖2 + ‖y − a‖2 . (3)

If Γ 1(F ; Ω) < +∞, then the Whitney conditions [26], or Glaeser in [10] are satisfied and the 1-field F can 
be extended on Rn: there exists g ∈ C 1,1(Rn, R) such that g(x) = fx and ∇g(x) = Dxf for all x ∈ Ω where 
∇g is the usual gradient. Moreover, from [12, Theorem 2.6] we can find g which satisfies

Γ 1(G;Rn
)

= Γ 1(F ;Ω),

where G is the 1-field associated to g, i.e.

G(x)(y) = g(x) +
〈
∇g(x), y − x

〉
, x ∈ Ω, y ∈ R

n.

It means that the Lipschitz constant does not increase when extending F by G. We say that G is a minimal 
Lipschitz extension (MLE for short) of F and we have

Γ 1(G;Rn
)

= inf
{
Lip

(
∇h;Rn

)
: h(x) = fx, ∇h(x) = Dxf, x ∈ Ω, h ∈ C 1,1(

R
n,R

)}
,

where the notation Lip(u; .) means that

Lip(u;x, y) � ‖u(x) − u(y)‖
‖x− y‖ , x, y ∈ Ω, x 
= y, and Lip(u;Ω) � sup

x�=y∈Ω
Lip(u;x, y). (4)

It is worth asking what is it the relationship between Γ 1(F ; Ω) and Lip(Df ; Ω)? From [12], we know that 
Lip(Df ; Ω) ≤ Γ 1(F ; Ω). In the special case Ω = R

n we have Lip(Df ; Rn) = Γ 1(F ; Rn) but in general the 
formula Lip(Df ; Ω) = Γ 1(F ; Ω) is untrue. In this paper we will prove that if Ω is an open subset of Rn

then

Γ 1(F ;Ω) = max
{
Γ 1(F ; ∂Ω),Lip(Df ;Ω)

}
, (5)

where ∂Ω is a boundary of Ω. Moreover, if Ω is a convex subset of Rn then

Γ 1(F ;Ω) ≤ 2 Lip(Df ;Ω). (6)

To make the connection between Γ 1(F ; Ω) and Lip(Df ; Ω), it is important to know the set of uniqueness of 
minimal extensions of F when Ω has two elements (this study was performed in [14]). Indeed, many results 
of Section 3 use this knowledge. For further more details see Section 3.

In Section 4, we present two MLEs U+ and U− of F of the form

U+ : x ∈ R
n �→ U+(x)(y) � u+(x) +

〈
Dxu

+; y − x
〉
, y ∈ R

n, (7)

where

u+(x) � sup
v∈Λx

inf
a∈Ω

Ψ+(F, x, a, v), Dxu
+ � arg sup

v∈Λx

inf
a∈Ω

Ψ+(F, x, a, v), (8)
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