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This paper presents an extension of standard iterative splitting schemes to multiple 
splitting schemes for solving higher order differential equations. The motivation is 
to solve the systems of equations which occur in the dynamics of electrons in a 
plasma, using a simplified Boltzmann equation with scattering terms. We reformu-
late its integro-differential equations into higher order differential equations and then 
apply iterative splitting methods. Such methods allow decoupling the system into 
simpler and more quickly solvable first order differential equations: the main idea is 
to separate the fundamental system of the higher order differential equations into 
subsystems. This decomposition of the system into first order differential equations 
allows analyzing such schemes and deriving numerical algorithms. In the numerical 
part, we discuss the motivation from physical applications in plasma dynamics and 
present numerical simulations for real-life applications of these integro-differential 
models.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The motivation of this paper arose from studying a simulation of active plasma resonance spectroscopy, 
something which is well established as a plasma diagnostic technique; the first ideas were discussed in [11]. 
To study such simulation models, we consider an abstract kinetic model based on integro-differential equa-
tions, which can be reformulated as higher order differential equations, see the models discussed in [4,18,22]. 
In this paper, we concentrate on iterative schemes that allow solving such coupled linear and nonlinear 
systems of equations, see [17]. Historically, splitting schemes were applied to reduce the computational time 
required, by decoupling the system into simpler and more rapidly solvable equations, see [24,20]. One of the 
main problems is to reduce the splitting error, see [23], and apply higher order schemes based on a decompo-
sition of products of exponential functions, see [13] and [3], or fixed-point and relaxation schemes to resolve 
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kernel functions, see [8]. We consider the second alternative, i.e., fixed-point or relaxation schemes to im-
prove the accuracy of the splitting equations. The main idea in this paper is to decompose a system of 
integro-differential equations into a system of first order differential equations and apply an iterative split-
ting scheme in a multiple way as a solver method, see [8]. Such decompositions allow accelerating the solver 
processes, while the coupling of the separate parts is done with fast iterative splitting methods. Here we 
discuss a novel iterative method and its theoretical and practical parts.

This paper is organized as follows.
Section 2 presents the model equations and the reduced model for systems of first order differential 

equations. The splitting schemes are presented and we study their convergence results in Section 3. The 
results of some numerical benchmark problems and simple real-life experiments are presented in Section 4. 
Section 5 summarizes the results.

2. Model equations and fundamental systems

Here we specialize to an abstract kinetic model to describe the dynamics of electrons in a plasma which 
takes into account resonance.

A simplified Boltzmann equation for the electron density is

∂f(x, v, t)
∂t

= −v · ∇xf(x, v, t) − e

me
∇xφ · ∇vf(x, v, t)

− σ(x, v, t)f(x, v, t) +
∫
V

κ
(
x, v, v′

)
f
(
x, v′, t

)
dv′, (1)

f(x, v, 0) = f0(x, v), (2)

and we apply Dirichlet boundary conditions. The unknown f is the density of the electrons and the initial 
density f0 is given. v is the velocity, κ the collision operator, see [22]. Further, e is the charge of the electron 
and me is the mass of the electron. φ is the given potential and σ the adsorption or emission parameter of 
the particles.

We assume that Eq. (1) can be semi-discretized with finite difference or finite volume schemes and by 
embedding the boundary conditions, we obtain a system of ordinary differential equations, see also [7].

In the following, we will discuss the higher order differential equations in a Banach space XReal ⊂ R
n in 

the inhomogeneous form (see also [2]):

A0
dnu(t)
dnt

+ A1
dn−1u(t)
dtn−1 + . . . + An = f(t), (3)

di−1u(0)
dti−1 = ui−1,0, i = 1, . . . , n, (4)

where A0, . . . , An : XReal → XReal are bounded operators, ‖ · ‖ is the corresponding norm in XReal , and 
‖ · ‖L(XReal) is the induced operator norm.

Further, the higher order differential equations (3) are given in homogeneous form (see also [2]):

A0
dnu(t)
dnt

+ A1
dn−1u(t)
dtn−1 + . . . + An = 0, (5)

di−1u(0)
dti−1 = ui−1,0, i = 1, . . . , n. (6)

For the transformation, we make the following assumptions:
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