Positive ground state solutions and multiple nontrivial solutions for coupled critical elliptic systems

Xiaorui Yue ${ }^{1}$
Department of Mathematics, College of Information Science and Technology, Hainan University, Hainan 570228, PR China

A R T I C L E I N F O

Article history:

Received 13 October 2014
Available online 4 February 2015
Submitted by Y. Du

Keywords:

Critical exponent
Elliptic system
Multiple solutions
Positive ground state solution

ABSTRACT

In this study, we consider the following coupled elliptic system with a Sobolev critical exponent:

$$
\left\{\begin{array}{l}
-\Delta u_{1}+\lambda_{1} u_{1}=\nu_{1} u_{1}^{p_{1}-1}+\mu_{1} u_{1}^{2^{*}-1}+\beta u_{1}^{\frac{2^{*}}{2}-1} u_{2}^{\frac{2^{*}}{2}}, x \in \Omega \tag{P}\\
-\Delta u_{2}+\lambda_{2} u_{2}=\nu_{2} u_{2}^{p_{2}-1}+\mu_{2} u_{2}^{2^{*}-1}+\beta u_{1}^{\frac{2^{*}}{2}} u_{2}^{\frac{2^{*}}{2}-1}, x \in \Omega \\
u_{1}, u_{2} \geq 0 \text { in } \Omega, u_{1}=u_{2}=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $N \geq 5,2<p_{1}, p_{2}<2^{*}, \lambda_{j} \in$ $\left(-\lambda_{1}(\Omega), 0\right), \mu_{j}>0$ for $j=1,2$, and $\lambda_{1}(\Omega)$ is the first eigenvalue of $-\Delta$ with the Dirichlet boundary condition. We demonstrate the existence of a positive ground state solution for problem (\mathcal{P}) when the coupling parameter $\beta \geq-\sqrt{\mu_{1} \mu_{2}}$. Under some other conditions, we show the nonexistence of positive solutions for (\mathcal{P}) when $N \geq 3$. We also construct multiple nontrivial solutions and sign-changing solutions for the following system:

$$
\left\{\begin{array}{l}
-\Delta u_{1}+\lambda_{1} u_{1}=\mu_{1} u_{1}^{3}+\beta u_{2}^{2} u_{1}, x \in \Omega \\
-\Delta u_{2}+\lambda_{2} u_{2}=\mu_{2} u_{2}^{3}+\beta u_{1}^{2} u_{2}, x \in \Omega \\
u_{1}=u_{2}=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain and $N \leq 4$.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there have been extensive mathematical investigations of the following coupled elliptic system:

[^0]\[

\left\{$$
\begin{array}{l}
-\Delta u_{1}+\lambda_{1} u_{1}=\mu_{1} u_{1}^{3}+\beta u_{2}^{2} u_{1}, x \in \Omega, \tag{1.1}\\
-\Delta u_{2}+\lambda_{2} u_{2}=\mu_{2} u_{2}^{3}+\beta u_{1}^{2} u_{2}, x \in \Omega, \\
u_{1}=u_{2}=0 \text { on } \partial \Omega,
\end{array}
$$\right.
\]

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain or $\Omega=\mathbb{R}^{N}$. System (1.1) arises when we consider the standing wave solutions to the following time-dependent Schrödinger system, which comprises two coupled Gross-Pitaevskii equations:

$$
\left\{\begin{array}{l}
-i \frac{\partial}{\partial t} \Phi_{1}=\Delta \Phi_{1}+\mu_{1}\left|\Phi_{1}\right|^{2} \Phi_{1}+\beta\left|\Phi_{2}\right|^{2} \Phi_{1}, x \in \Omega, t>0 \tag{1.2}\\
-i \frac{\partial}{\partial t} \Phi_{2}=\Delta \Phi_{2}+\mu_{2}\left|\Phi_{2}\right|^{2} \Phi_{2}+\beta\left|\Phi_{1}\right|^{2} \Phi_{2}, x \in \Omega, t>0 \\
\Phi_{j}=\Phi_{j}(x, t) \in \mathbb{C}, j=1,2 \\
\Phi_{j}(x, t)=0, x \in \partial \Omega, t>0, j=1,2
\end{array}\right.
$$

which has many applications in physics and nonlinear optics (see [27]). Physically, the solution Φ_{j} denotes the j th component of the beam in Kerr-like photorefractive media (see [1]), μ_{j} represents self-focusing in the j th component, and the coupling constant β is the interaction between the two components of the beam. System (1.2) also arises in the Hartree-Fock theory for a double condensate, which is a binary mixture of Bose-Einstein condensates in two different hyperfine states $|1\rangle$ and $|2\rangle$ (see [18] and the references therein). In order to obtain solitary wave solutions of system (1.2), we set $\Phi_{j}(x, t)=e^{i \lambda_{j} t} u_{j}(x)$ for $j=1,2$. Then, it is reduced to system (1.1). The existence of least energy and other finite energy solutions were studied by $[2,6,7,13,15-17,20,25-27,30,31]$ and the references therein. The existence and multiplicity of positive and sign-changing solutions were studied by $[2,5-7,10,11,13,20-24,26,29]$ and the references therein.

However, we note that most of the studies mentioned above considered the subcritical case, i.e., $N \leq 3$. When $N=4$, which is the critical case $\left(2^{*}:=\frac{2 N}{N-2}=4\right)$, the authors of [12] demonstrated the existence of a positive least energy solution for all negative β, positive small β, and positive large β. Later, in [14], they considered the following critical case for higher dimensional $N \geq 5$:

$$
\left\{\begin{array}{l}
-\Delta u_{1}+\lambda_{1} u_{1}=\mu_{1} u_{1}^{2^{*}-1}+\beta u_{1}^{\frac{2^{*}}{2}-1} u_{2}^{\frac{2^{*}}{2}}, x \in \Omega \tag{1.3}\\
-\Delta u_{2}+\lambda_{2} u_{2}=\mu_{2} u_{2}^{2^{*}-1}+\beta u_{1}^{2^{*}} u_{2}^{\frac{2^{*}}{2}-1}, x \in \Omega \\
u_{1}, u_{2} \geq 0 \text { in } \Omega, u_{1}=u_{2}=0 \text { on } \partial \Omega
\end{array}\right.
$$

In [19], the authors also considered system (1.3) and showed that when $N \geq 3$, it has a positive solution for $\beta \rightarrow 0$ or $+\infty$. When $N=4$, system (1.3) returns to (1.1). Interestingly, the authors of [14] obtained different results from the case when $N=4$. Indeed, they showed that system (1.3) has a positive least energy solution for any $\beta \neq 0$. When $\beta=0$, system (1.3) is reduced to the following critical exponent equation, which was first studied by Brezis and Nirenberg in [8]:

$$
\left\{\begin{array}{l}
-\Delta u_{j}+\lambda_{j} u_{j}=\mu_{j} u_{j}^{2^{*}-1}, x \in \Omega \tag{1.4}\\
u_{j} \geq 0 \text { in } \Omega, u_{j}=0 \text { on } \partial \Omega, j=1,2 .
\end{array}\right.
$$

In [8], they also included the following more general case:

$$
\left\{\begin{array}{l}
-\Delta u+\lambda_{j} u=\nu_{j} g_{j}(x, u)+\mu_{j} u^{2^{*}-1}, x \in \Omega, \tag{1.5}\\
u \geq 0 \text { in } \Omega, u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

By taking $g_{j}(x, u)=u^{p_{j}-1}$, where $2<p_{j}<2^{*}$ for $j=1,2, N \geq 4, \nu_{j}, \mu_{j}>0, \lambda_{j} \in\left(-\lambda_{1}(\Omega), 0\right)$, problem (1.5) has positive ground state solutions $v_{1}, v_{2} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ for $j=1,2$ respectively, with the energy

$$
\begin{equation*}
0<B_{j}:=\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{j}\right|^{2}+\lambda_{j} u_{j}^{2}\right)-\frac{1}{p_{j}} \int_{\Omega} \nu_{j} v_{j}^{p_{j}}-\frac{1}{2^{*}} \int_{\Omega} \mu_{j} v_{j}^{2^{*}}<\frac{1}{N} \mu_{j}^{-\frac{N-2}{2}} S^{\frac{N}{2}}, \tag{1.6}
\end{equation*}
$$

where S is the sharp embedding constant from $D^{1,2}\left(\mathbb{R}^{N}\right)$ into $L^{2^{*}}\left(\mathbb{R}^{N}\right)$.

https://daneshyari.com/en/article/4615237

Download Persian Version:
https://daneshyari.com/article/4615237

Daneshyari.com

[^0]: E-mail address: yuexiaorui39@126.com.
 ${ }^{1}$ Supported by NSFC (11025106, 11371212, 11271386).
 http://dx.doi.org/10.1016/j.jmaa.2015.01.073
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

