On the existence of orthogonal polynomials for oscillatory weights on a bounded interval

Hassan Majidian ${ }^{1}$
Department of Basic Sciences, Iranian Institute for Encyclopedia Research, PO Box 14655-478, Tehran, Iran

A R T I C L E I N F O

Article history:
Received 28 June 2014
Available online 18 February 2015
Submitted by K. Driver

Keywords:

Orthogonal polynomial
Oscillatory weight
Gaussian quadrature rule

Abstract

It is shown that the polynomials orthogonal on $(-1,1)$ w.r.t. the oscillatory weight $\mathrm{e}^{\mathrm{i} \omega x}$ exist if ω is a transcendental number and $\tan \omega / \omega \in \mathbb{Q}$. Also, it is proved that such orthogonal polynomials exist for almost all $\omega>0$, and the roots are all simple if $\omega>0$ is either small enough or large enough.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of existence of orthogonal polynomials and Gaussian quadrature rules (in the standard form) for the following inner product:

$$
\begin{equation*}
(f, g)_{\omega}=\int_{-1}^{1} f(x) g(x) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x \tag{1}
\end{equation*}
$$

with $\omega>0$. A similar consideration on polynomials orthogonal on $(-1,1)$ w.r.t. the weight function $x(1-$ $\left.x^{2}\right)^{-1 / 2} \mathrm{e}^{\mathrm{i} \omega x}$ is the subject of the paper [3]. More precisely, we seek a monic polynomial p_{n}^{ω} of a given degree n such that

$$
\begin{equation*}
\int_{-1}^{1} p_{n}^{\omega}(x) x^{j} \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x=0, \quad j=0,1, \ldots, n-1 \tag{2}
\end{equation*}
$$

The following results on the existence of p_{n}^{ω} are due to [1]:
Proposition 1. p_{1}^{ω} exists for any ω except when ω is a multiple of π.

[^0]Proposition 2. p_{2}^{ω} exists for all ω.
Conjecture 1. p_{n}^{ω} with n even exists for all ω.
Conjecture 2. p_{n}^{ω} with n odd does not exist for some ω.
In this paper, we give a sufficient condition on ω for which p_{n}^{ω} exists for all n. According to Conjecture 1, this condition is not necessary. We show that p_{n}^{ω} exists for almost all $\omega>0$. If the existence of p_{n}^{ω} is assumed, it is shown that all of its roots are simple when $\omega>0$ is either small enough or large enough.

Throughout the paper, we frequently suppress the dependence of objects on ω for simplification in notations.

2. Orthogonal polynomials

A necessary and sufficient condition for existence of the orthogonal polynomial p_{n}^{ω} is that the Hankel determinant

$$
\Delta_{n}=\left|\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n-1} \tag{3}\\
\mu_{1} & \mu_{2} & \cdots & \mu_{n} \\
\vdots & \vdots & \cdots & \vdots \\
\mu_{n-1} & \mu_{n} & \cdots & \mu_{2 n-2}
\end{array}\right|
$$

does not vanish. The moment $\mu_{k}:=\int_{-1}^{1} x^{k} \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x$ is defined recursively (see [1]):

$$
\begin{align*}
& \mu_{0}=\frac{2 \sin \omega}{\omega}, \tag{4a}\\
& \mu_{k}=\frac{1}{\mathrm{i} \omega}\left(\mathrm{e}^{\mathrm{i} \omega}-(-1)^{k} \mathrm{e}^{-\mathrm{i} \omega}\right)-\frac{k}{\mathrm{i} \omega} \mu_{k-1}, \quad k \geq 1 . \tag{4b}
\end{align*}
$$

It is easy to show that

$$
\begin{equation*}
\mu_{k}=\frac{(-1)^{k} k!}{(\mathrm{i} \omega)^{k}} \sum_{\nu=0}^{k} \frac{(-\mathrm{i} \omega)^{\nu} s_{\nu}}{\nu!} \tag{5}
\end{equation*}
$$

where

$$
s_{\nu}:=\frac{1}{\mathrm{i} \omega}\left(\mathrm{e}^{\mathrm{i} \omega}-(-1)^{\nu} \mathrm{e}^{-\mathrm{i} \omega}\right)= \begin{cases}\frac{2 \sin \omega}{\omega}, & \text { for } \nu \text { even } \\ \frac{2 \cos \omega}{\mathrm{i} \omega}, & \text { for } \nu \text { odd }\end{cases}
$$

Then we can expand (5) into

$$
\begin{equation*}
\mu_{k}=\frac{2(-1)^{k+1} k!}{(\mathrm{i} \omega)^{k}}\left(\cos \omega \sum_{\substack{\nu=1 \\ \nu \text { odd }}}^{k} \frac{(-\mathrm{i} \omega)^{\nu-1}}{\nu!}-\frac{\sin \omega}{\omega}\left(1+\sum_{\substack{\nu=2 \\ \nu \text { even }}}^{k} \frac{(-\mathrm{i} \omega)^{\nu}}{\nu!}\right)\right) . \tag{6}
\end{equation*}
$$

Now consider the matrix corresponding to the Hankel determinant Δ_{n}. If we take from the r th row the factor $\left(\frac{-1}{\mathrm{i} \omega}\right)^{r-1}$, and from the sth column the factor $\left(\frac{-1}{\mathrm{i} \omega}\right)^{s-1}$, then we arrive at a new Hankel determinant $\widetilde{\Delta}_{n}$ with the moments

$$
\begin{equation*}
\widetilde{\mu}_{k}:=-2 k!\left(\cos \omega \sum_{\substack{\nu=1 \\ \nu \text { odd }}}^{k} \frac{(-\mathrm{i} \omega)^{\nu-1}}{\nu!}-\frac{\sin \omega}{\omega}\left(1+\sum_{\substack{\nu=2 \\ \nu \text { even }}}^{k} \frac{(-\mathrm{i} \omega)^{\nu}}{\nu!}\right)\right) . \tag{7}
\end{equation*}
$$

https://daneshyari.com/en/article/4615245

Download Persian Version:

https://daneshyari.com/article/4615245

Daneshyari.com

[^0]: E-mail address: majidian@iecf.ir.
 ${ }^{1}$ Fax: +982122073943.

