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Population dynamics are often subject to random independent changes in the en-
vironment. For the two strategy stochastic replicator dynamic, we assume that 
stochastic changes in the environment replace the payoffs and variance. This is 
modeled by a continuous time Markov chain in a finite atom space. We establish 
conditions for this dynamic to have an analogous characterization of the long-run 
behavior to that of the deterministic dynamic. To create intuition, we first consider 
the case when the Markov chain has two states. A very natural extension to the 
general finite state space of the Markov chain will be given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic environments where independent external forces change the dynamic of the system are com-
mon in biological and economic settings [20,12,5,16,6,11,25,13,10,19,1]. An example to illustrate a complete 
and state-independent change in the dynamic is sickle-cell anemia [1,2]. Being a carrier for sickle-cell lowers 
an individual’s fitness, however, during malaria outbreaks, since sickle-cell carriers have immunity, which in-
creases their fitness. The random event of malaria outbreaks may be described as a continuous-time Markov 
chain that is independent of the population dynamic, yet changes the population dynamic.

Antibiotics affecting microbial populations is another example of a population subjected to an indepen-
dent stochastic environment [4]. The authors discuss the affects of antibiotics to bacteria, such as Escherichia 
coli and Salmonella enterica, and what persistent environment is needed to support the type that is antibi-
otic resistant.

Although the motivation for our model is mostly biological, there is also a relationship with economics. 
A commonly used tool in economics is Markovian switching [12,5,16,6]. This includes modeling business 
cycles and GDP growth, electricity spot price models, and interest rates, all of which are agents working in 
a stochastic environment.

Kussell and Leibler [20] model the phenomenon of when bacteria change their phenotype to adjust to the 
stochastic environment. The authors assume there are n-phenotypes and linear growth where the fitness 
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and switch to another phenotype is contingent on the current state of the environment. The stochastic 
environment is modeled by a k atom state continuous time Markov process, and is independent of the 
evolution of the population. In a current state, if a certain phenotype’s fitness is comparatively small, this 
increases the probability of phenotype switching. The authors then derive the optimal long-term growth 
rate.

Markovian switching has also been applied to Lotka–Volterra and epidemiological population dynam-
ics [11,25,28]. Gray et al. [11] assumed a deterministic susceptible–infected–susceptible model and changed 
parameters according to a continuous Markov chain. The authors discovered that the parameters coupled 
with the unique invariant measure of the Markov chain gave essentially new rates and found similar inequal-
ities for either an endemic to occur or for the disease to become negligible. Takeuchi et al. [25] analyzed the 
switching between two deterministic Lotka–Volterra models and showed that this system is neither perma-
nent nor dissipative. Zhu and Yin [28] consider a stochastic general Lotka–Volterra under Stratonovich-type 
perturbation, and show that this hybrid system has bounded growth rates, derive limits of certain long run 
averages, as well as derive conditions for almost-sure convergence within a two population system.

Fudenberg and L.A. Imhof [10] applied a simpler method where the event that switches the fitness of a 
population modeled by a Moran process was independent and identically distributed. The authors assumed 
a two state switched system, considered the mean of the fitness, and compared the switched fitnesses to 
derive their results.

Considering both a discrete Moran and a deterministic continuous time replicator dynamic, Harper 
et al. [13] applied a method similar to of Fudenberg and L.A. Imhof to determine whether the mean game of 
the switched system was either a strategy 1 dominant (prisoner’s dilemma), strategy 2 dominant (prisoner’s 
dilemma), coordination game, or mixed strategy dominant (hawk–dove). For the continuous time replicator 
dynamic, the authors determined this classification by comparing the ratios of the difference between the 
payoffs of the two underlying games and the ratio of whether the event will occur or not. These results are 
different than the ones derived in this paper.

We analyze a Markovian switched stochastic replicator dynamic with two strategies and determine con-
ditions for this “new” game to be classified in one of the four games mentioned in the previous paragraph. 
The times between jumps to another state for the continuous time Markov chain are assumed to have an 
exponential distribution. Since the switched systems are stochastic, the classifications are similar to the 
ones given by Fudenberg and Harris [9], in that the inequality of a payoff of pure strategy against itself 
and the other strategy are perturbed by half the difference of the variances (perturbation from the white 
noise), and the comparison of the transition from a fixed state to the other states (perturbation from the 
Markov chain). Since the switching indirectly perturbs the dynamic, appropriately determined constants 
(that are not unique) are associated with a particular state. The difference between the constant of the 
fixed state and another state, multiplied by this transition rate, compares this transition. The sum of these 
terms encompasses the entire transition comparison for this state. For example, if the dynamic switches 
between two states where the transition rates are equal, then the addition/subtraction of an appropriately 
sized constant to the inequalities derived by Fudenberg and Harris [9] determine the proper inequalities for 
the dynamic.

To help create intuition, we first consider a Markov chain in a two atom state space, then extend the 
analogous results to the general finite atom state space. To illustrate the conditions for the long-run be-
havior, we give an example of cooperation in a stochastic environment where defection is punished in one 
environment, and not punished in the other. The efficacy of punishment is then explored.

2. Stochastic replicator dynamic

Consider a two-player symmetric game, where aij is the payoff to a player using pure strategy Si against 
an opponent employing strategy Sj , and take A = (aij) as the payoff matrix. Within a population we 
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