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The starting point of our study is the knowledge that certain surface piercing 
bodies support a trapped mode, i.e. an embedded eigenvalue in the continuous 
spectrum. In the framework of the two-dimensional theory of linear water waves, 
we investigate the question whether a trapped mode still exists after the small 
perturbation of the body contours. The perturbation of the obstacle is performed 
by a linear combination of appropriate profile functions. The coefficients of the 
profile functions and a perturbation parameter of the eigenvalue form a parameter 
space which controls the embedded eigenvalue as well as the geometry of the water 
domain. Based on the concept of enforced stability of embedded eigenvalues in the 
continuous spectrum, we will show that the trapped mode is preserved in the small 
perturbation, if the profile functions fulfil problem dependent orthogonalisation and 
normalisation conditions. The argumentation relies on a sufficient condition for the 
existence of a trapped mode and the notion of the augmented scattering matrix. 
With the help of asymptotic analysis, we will derive a fixed point equation in the 
parameter space to determine the appropriate profiles of perturbation. We study 
the solvability of this equation by the Banach contraction principle.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem formulation

The motivation for our paper is the problem investigated in [16], where the interaction of water waves with 
obstacles was studied within the linear theory of water waves. It is related to the classic question whether 
the water wave problem admits a unique solution for all wave frequencies [10, Ch. 3]. In [16] an example 
of non-uniqueness is demonstrated. This has been achieved by constructing a trapped mode, i.e., a velocity 
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Fig. 1. The unperturbed domain. Fig. 2. The perturbed domain.

potential, which does not radiate any waves to infinity. The potential is formed by two wave sources with 
equal strength located symmetrically with respect to the origin. The two streamlines of the velocity potential 
can then be interpreted as the body contours of the surface piercing bodies. The constructed streamline 
patterns are symmetric. By the same method one can construct two surface piercing bodies, that are not 
symmetric, such that the water wave problem has a non-trivial solution with finite energy [10, p. 145]. We 
emphasise that the method in [16] requires rather specific shapes of the bodies.

Now the question we are raising is whether the trapped mode still exists after a small perturbation of 
the body contours. We start our investigation by assuming that a trapped mode is supported by the body 
contours Γ and Γ0 which are smooth non-intersecting arcs in the lower half-plane

R
2
− = {(y, z): y ∈ R, z < 0}

with the endpoints Q1 = (−b1, 0), Q2 = (−b2, 0) ∈ Γ and P 1 = (a1, 0), P 2 = (a2, 0) ∈ Γ0, respectively, 
where a2 > a1 > 0 and b2 > b1 > 0. We also need that the curves intersect ∂R2

− under angles ϑ ∈ (0, π).
In what follows we assume that the arc Γ is fixed but Γ0 has a small local perturbation. For that, we 

introduce in the neighbourhood N of Γ0 local curvilinear coordinates (n, s), where n is the oriented distance 
to the curve Γ0 and s ∈ (0, l0) is the arc length along Γ0. Then the perturbed curve will be

Γε = {(y, z) ∈ N : n = εh(s), s ∈ (0, l0)} (1)

depending on the small positive parameter ε > 0 and on the profile function h(s) ∈ C∞
0 (0, l0), which is an 

infinitely differentiable and compactly supported function and vanishes near the endpoints s = 0 and s = l0. 
Therefore, the points P 1 and P 2 stay unperturbed.

By rescaling, the distance |P 2 −P 1| can be set equal to one, which makes the Cartesian coordinates and 
the geometric parameters ε, l0 and h dimensionless. Furthermore, by Ωε we denote the domain R2

− \ (Ξ∪Ξε)
(see Fig. 1 and Fig. 2), where Ξ and Ξε are the domains bounded by the y-axis and the curves Γ and Γε, 
respectively.

We will consider the standard two-dimensional linear water wave problem on the interaction of surface 
waves with the fixed obstacles Ξ and Ξε, see [10]. As known, the velocity potential ϕε satisfies the Laplace 
equation

−Δϕε(y, z) = 0, (y, z) ∈ Ωε. (2)

On the wetted part of the obstacle surfaces it fulfils the Neumann boundary condition (no normal flow), i.e.

∂νϕε(y, z) = 0, (y, z) ∈ Γ ∪ Γε, (3)

and the kinematic boundary condition (the Steklov condition) on the free surface Σ = {(y, z): z = 0,
y /∈ [a1, a2] ∪ [−b2, −b1]},

∂zϕε(y, 0) = λεϕε(y, 0), (y, 0) ∈ Σ. (4)

Here λε = g−1ω2
ε is the spectral parameter, g > 0 is the acceleration due to gravity and ωε > 0 is the time 

frequency of propagating water waves. The outward normal derivative ∂ν with respect to Ωε coincides with 
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