The Journal of Systems and Software 83 (2010) 283-302

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

Verification and validation of declarative model-to-model transformations

through invariants

Jordi Cabot?®!, Robert Clarisé?, Esther Guerra®*, Juan de Lara®

2 Estudis d’Informatica, Multimédia i Telecomunicaci6, Univ. Oberta de Catalunya, Spain

b Computer Science Department, Universidad Carlos Il de Madrid, Spain
€ Polytechnic School, Universidad Auténoma de Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 3 March 2009

Received in revised form 28 July 2009
Accepted 6 August 2009

Available online 15 August 2009

Keywords:

Model-to-model transformation
Model-Driven Development
OCL

Verification and validation
Triple Graph Grammars

QVT

In this paper we propose a method to derive OCL invariants from declarative model-to-model transfor-
mations in order to enable their verification and analysis. For this purpose we have defined a number
of invariant-based verification properties which provide increasing degrees of confidence about transfor-
mation correctness, such as whether a rule (or the whole transformation) is satisfiable by some model,
executable or total. We also provide some heuristics for generating meaningful scenarios that can be used
to semi-automatically validate the transformations.

As a proof of concept, the method is instantiated for two prominent model-to-model transformation
languages: Triple Graph Grammars and QVT.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Model-Driven Development (MDD) is a software engineering
paradigm where models are the core asset (Volter and Stahl,
2006). They are used to specify, simulate, test, verify and generate
code for the application to be built. Many of these activities include
the specification and execution of model-to-model (M2M) trans-
formations, that is, the transformation of a model conformant to
a meta-model into another one conformant to a different meta-
model.

There are two main approaches to M2M transformation: opera-
tional and declarative. The former is based on rules or instructions
that explicitly state how and when creating the elements of the
target model from elements of the source one. Instead, in declara-
tive approaches, some kind of visual or textual patterns describing
the relations between the source and target models are provided,
from which operational mechanisms are derived e.g. to perform
forward and backward transformations. These declarative patterns
are complemented with additional information to express rela-
tions between attributes in source and target elements, as well
as to constrain when a certain relation should hold. The Object

* Corresponding author.
E-mail addresses: jcabot@uoc.edu (J. Cabot), rclariso@uoc.edu (R. Claris6),
eguerra@inf.uc3m.es (E. Guerra), Juan.deLara@uam.es (J. de Lara).
1 Rbla. del Poblenou 156, E-08018 Barcelona, Spain.

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.08.012

Constraint Language (OCL) standard (Object Management Group,
2003) is frequently used for this purpose (OMG, 2007).

The increasing complexity of modelling languages, models and
transformations makes urgent the development of techniques and
tools that help designers to assure transformation correctness.
Whereas several notations have been proposed for specifying
M2M transformations in a declarative way (Akehurst et al., 2003;
Jouault et al., 2006; OMG, 2007; Schiirr, 1994), there is a lack of
methods for analysing their correctness in an integral way, taking
into account the relations expressed by the transformation, as well
as the meta-models and their well-formedness rules.

In this paper we propose verification and validation techniques
for M2M transformations based on the analysis of a set of OCL
invariants automatically derived from the declarative description
of the transformations. These invariants state the conditions that
must hold between a source and a target model in order to satisfy
the transformation definition, i.e. in order to represent a valid map-
ping. We call these invariants, together with the source and target
meta-models, a transformation model (Bézivin et al., 2006). To show
the wide applicability of the technique, we study how to create this
transformation model from two prominent M2M transformation
languages: Triple Graph Grammars (TGGs) (Schiirr, 1994) and
QVT (OMG, 2007).

Once the transformation model is synthesized, we can deter-
mine several correctness properties of the transformation by ana-
lysing the generated transformation model with any available


http://dx.doi.org/10.1016/j.jss.2009.08.012
mailto:jcabot@uoc.edu
mailto:rclariso@uoc.edu
mailto:eguerra@inf.uc3m.es
mailto:Juan.deLara@uam.es
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

284 J. Cabot et al./ The Journal of Systems and Software 83 (2010) 283-302

tool for the verification of static UML/OCL class diagrams (see
Anastasakis et al., 2007; Brucker and Wolff, 2006; Cabot et al.,
2008; Queralt and Teniente, 2006; Straeten et al., 2003). In partic-
ular, we have predefined a number of verification properties in
terms of the extracted invariants, which provide increasing confi-
dence on the transformation correctness. For example, we can
check whether a relation or the whole transformation is applicable
in the forward direction (i.e., whether there is a source model en-
abling a relation), forward weak executable (if we can find a pair of
source and target models satisfying the relation and the meta-
model constraints), forward strong executable (if a relation is sat-
isfied whenever it is enabled), or total (whether all valid source
models can be transformed). In order to illustrate this analysis,
we show the use of the UMLtoCSP tool (Cabot et al., 2008) to per-
form the verification. The tool translates the transformation model
into a constraint satisfaction problem, which is then processed
with constraint solvers to check different aspects of the model.

The transformation model can also be used for validation pur-
poses. Given the transformation model, tools like UMLtoCSP can
be used to automatically generate valid pairs of source and target
models, or a valid target model for a given or partially specified
source model. These generated pairs help designers in deciding
whether the defined transformation reflects their intention, thus
helping to uncover transformation defects. Additionally, we have
devised heuristics to partially automate the validation process by
means of generating potentially relevant scenarios (representing
corner cases of the transformation) that the designer may be spe-
cially interested in reviewing.

This paper extends our preliminary work in Cabot et al. (2008).
Here, we propose a new way of handling OCL attribute conditions
in TGGs which avoids algebraic manipulations; provide a new way
of generating invariants, so as to make the resulting TGG and QVT
invariants more uniform, easing its portability to other languages;
present a detailed formalization of the extraction of invariants
from QVT; provide a comprehensive list of formalized verification
properties; and present a semi-automatic method for validation.

Paper organization. Section 2 introduces TGGs and our proposal
for handling OCL attribute conditions. Section 3 presents the meth-
od for extracting invariants from TGGs. Sections 4 and 5 present
such method for QVT. Section 6 shows the use of the invariants
and UML/OCL analysis tools for the verification and validation of
transformations. Section 7 compares with related work and Section
8 draws the conclusions. As running example we use a transforma-
tion between class diagrams and relational schemas (OMG, 2007).
The appendix includes all the invariants for the example.

2. Triple Graph Grammars

Triple Graph Grammars (TGGs) (Schiirr, 1994) were proposed
by A. Schiirr as a formal means to specify transformations between
two languages in a declarative way. TGGs are founded on the no-
tion of graph grammar (Rozenberg, 1997). A graph grammar is
made of rules having graphs in their left and right hand sides
(LHS and RHS), plus the initial graph to be transformed. Applying
a rule to a graph is only possible if an occurrence of the LHS (a
match) is found in it. Once such occurrence is found, it is replaced
by the RHS graph. This is called direct derivation. It may be possible
to find several matches for a rule, and then one is chosen at ran-
dom. The execution of a grammar is also non-deterministic: at
each step, one rule is randomly chosen and its application is tried.
The execution ends when no rule can be applied.

Even though graph grammar rules rely on pre- and post-condi-
tions, and on pattern matching, when used for model-to-model
transformation, they have an operational, unidirectional style, as
the rules specify how to build the target model assuming the

source already exists. On the contrary TGGs are declarative and
bidirectional since, starting from a unique TGG specifying the syn-
chronized evolution of two graphs, it is possible to generate for-
ward and backward transformations as well as operational
mechanisms for other scenarios (Kénigs and Schiirr, 2006).

TGGs are made of rules working on triple graphs. These are
made of two graphs called source and target, related through a cor-
respondence graph. Any kind of graph can be used for these three
components, from standard unattributed graphs (V;E;s,t: E — V)
to more complex attributed graphs, e.g. E-graphs (Ehrig et al.,
2006). The nodes in the correspondence graph (the mappings) have
morphisms? to the nodes in the source and target graphs. Triple
morphisms are defined as three graph morphisms that preserve
the correspondence functions. They are used to relate the LHS and
RHS of a TGG rule, to identify a match of the LHS in a graph, and
to type a triple graph.

Definition 1 (Triple graph and morphism). A triple graph
TrG = (Gs, G, Gt ¢s : Vg, — Vg, ct : Vg, — Vg,) is made of two
graphs Gs; and G; called source and target, related through the
nodes of the correspondence graph G..

A triple graph morphism f = (f,f..f;) : TrG' — TrG? is made of
three graph morphisms f : G}C — Gﬁ (with x = {s,c, t}) such that
the correspondence functions are preserved.

In the previous definition, V¢, is the set of nodes of graph G,.
Morphisms cs and ct relate two nodes x and y in the source and tar-
get graphs iff 3n € V¢, with cs(n) = x and ct(n) = y. We often depict
a triple graph by (Gs, G, G;), and use TrG, (for x = {s, c, t}) to refer to
the x component of TrG. In this way, (Gs, G, G¢); = Gs.

Fig. 1 shows a triple graph, taken from the class-to-relational
transformation (OMG, 2007), which we use as a running example.
The source graph is a class diagram with a package and a class, the
target one is a relational schema model with one schema node, and
the correspondence includes a mapping between the package and
the schema. Note that “source” and “target” are relative terms, as
we could also use source for the relational schema and target for
the class diagram.

A triple graph is typed by a meta-model triple (Guerra and de
Lara, 2007) or TGG schema, which contains the source and target
meta-models and declares allowed mappings between both.
Fig. 2 shows the meta-model triple for our running example. The
correspondence meta-model declares five classes: P2S maps pack-
ages and schemas, A2Co maps attributes and columns, and CT and
its specializations C2T and C2TCh relate classes and tables. In par-
ticular C2TCh is used to relate a children class with the table asso-
ciated to its parent class. The dotted arrows specify the allowed
morphisms from the correspondence to the source and target mod-
els, and can be treated as normal associations with cardinality 1 on
the side of the source/target class. The meta-model includes OCL
constraints ensuring uniqueness of attribute names for each class
and table, as well as same persistence for a class and its children.
As an example, the triple graph in Fig. 1 conforms to the meta-
model in Fig. 2.

A typed triple graph is formally represented as (TrG,type :
TrG — MM), where the first element is a triple graph and the sec-
ond a morphism to the meta-model triple. Morphisms between
typed triple graphs must respect the typing morphism and can
take inheritance into account, as in Guerra and de Lara (2007).
For simplicity of presentation, we omit the typing in the following
definitions.

Besides a meta-model triple, a M2M transformation by TGGs
consists of a set of declarative rules that describe the synchronized

2 A morphism corresponds to the mathematical notion of total function between
two sets, or in general between two structures (graphs, triple graphs, etc.).



Download English Version:

https://daneshyari.com/en/article/461526

Download Persian Version:

https://daneshyari.com/article/461526

Daneshyari.com


https://daneshyari.com/en/article/461526
https://daneshyari.com/article/461526
https://daneshyari.com

