Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Complex symmetry of invertible composition operators

Paul S. Bourdon^a, S. Waleed Noor^{b,*}

^a Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
^b Departamento de Matemática, ICMC-USP, São Carlos, SP 13566-590, Brazil

ARTICLE INFO

Article history: Received 3 February 2015 Available online 8 April 2015 Submitted by L. Fialkow

Keywords: Complex symmetric operator Composition operator Normal operator Linear fractional map Denjoy–Wolff point Elliptic automorphism

ABSTRACT

A bounded operator T on a separable Hilbert space \mathcal{H} is said to be *complex* symmetric if there exists an orthonormal basis for \mathcal{H} with respect to which T has a self-transpose matrix representation. In this paper, we study the complex symmetry of composition operators $C_{\phi}f = f \circ \phi$ induced on the Hardy space H^2 by holomorphic self-maps ϕ of the open unit disk \mathbb{D} . For any holomorphic self-map ϕ of \mathbb{D} , we establish that if C_{ϕ} is complex symmetric, then ϕ must fix a point in \mathbb{D} . Thus among the automorphisms of \mathbb{D} , only the elliptic ones may induce complex symmetric composition operators. For an elliptic automorphism ϕ , we prove that if ϕ is not a rotation or of order 3, then C_{ϕ} is complex symmetric if and only if

$$\phi(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$$

for some $\alpha \in \mathbb{D} \setminus \{0\}$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A bounded operator T on a separable Hilbert space \mathcal{H} is *complex symmetric* if there exists an orthonormal basis for \mathcal{H} with respect to which T has a self-transpose matrix representation. An equivalent definition also exists. A *conjugation* is a conjugate-linear operator $C : \mathcal{H} \to \mathcal{H}$ that satisfies the conditions

- (a) C is isometric: $\langle Cf, Cg \rangle = \langle g, f \rangle \forall f, g \in \mathcal{H},$
- (b) C is involutive: $C^2 = I$.

We say that T is C-symmetric if $T = CT^*C$, and complex symmetric if there exists a conjugation C with respect to which T is C-symmetric.

* Corresponding author.

E-mail addresses: psb7p@virginia.edu (P.S. Bourdon), waleed@icmc.usp.br (S. Waleed Noor).

Complex symmetric operators on Hilbert spaces are natural generalizations of complex symmetric matrices, and their general study was initiated by Garcia, Putinar, and Wogen [7–10]. The class of complex symmetric operators includes a large number of concrete examples including all normal operators, binormal operators, Hankel operators, finite Toeplitz matrices, compressed shift operators, and the Volterra integral operator.

If X is a Banach space of holomorphic functions on the unit disk \mathbb{D} and if ϕ is a holomorphic self-map of \mathbb{D} , the *composition operator* with symbol ϕ is defined by $C_{\phi}f = f \circ \phi$ for any $f \in X$. (The range of C_{ϕ} is contained in the space of holomorphic functions on \mathbb{D} , but need not be contained in X.) The study of composition operators consists in the comparison of the properties of the operator C_{ϕ} with those of symbol ϕ . For instance, if X is the Hardy space H^2 , then every holomorphic self-map ϕ induces a bounded composition operator on H^2 . The texts [4] and [11] contain comprehensive treatments of these operators.

The study of complex symmetry of composition operators was recently initiated by Garcia and Hammond [6]. There they pose the problem of characterizing all composition operators that are complex symmetric on H^2 . The only non-constant symbols that currently are known to induce complex symmetric composition operators on H^2 are identified in [6]: $\phi(z) = \beta z$ for some β in the closure $\overline{\mathbb{D}}$ of \mathbb{D} (i.e., precisely when C_{ϕ} is normal), and the order 2 elliptic automorphisms

$$\phi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z} \tag{1}$$

for $\alpha \in \mathbb{D}$. The complex symmetry of $C_{\phi_{\alpha}}$ follows from $C^2_{\phi_{\alpha}} = C_{\phi_{\alpha}\circ\phi_{\alpha}} = I$ and a result of Garcia and Wogen [10, Thm. 2] which states that any bounded Hilbert space operator satisfying a polynomial equation of order 2 is complex symmetric. A conjugation J such that $C_{\phi_{\alpha}} = JC^*_{\phi_{\alpha}}J$ was found recently in [12].

Our main results are the following:

Proposition. Let ϕ be an arbitrary holomorphic self-map of \mathbb{D} . If C_{ϕ} is complex symmetric, then ϕ must fix a point in \mathbb{D} .

Theorem. Let ϕ be an automorphism of \mathbb{D} which is not a rotation or elliptic of order 3. Then C_{ϕ} is complex symmetric if and only if $\phi = \phi_{\alpha}$ for some $\alpha \in \mathbb{D} \setminus \{0\}$.

The proposition above follows immediately from Proposition 2.1 of the next section, while the preceding theorem follows from Propositions 3.1 and 3.3 below, as well as [10, Thm. 2].

The plan of the paper is the following. In Section 2, we collect all the preliminary material we need. The main result here is Proposition 2.1, which says that if ϕ is any holomorphic self-map of \mathbb{D} and C_{ϕ} is complex symmetric, then ϕ either has Denjoy–Wolff point in \mathbb{D} or it is an elliptic automorphism. In Section 3, we study the complex symmetry of elliptic composition operators. Propositions 3.1 and 3.3 combined show that if ϕ is an elliptic automorphism of order ≥ 4 and is not a rotation, then C_{ϕ} is not complex symmetric. The order 3 elliptic case remains an *open problem*.

2. Preliminaries

2.1. The Hardy space H^2

Recall that a holomorphic function f on $\mathbb D$ belongs to the Hardy space H^p for some 0 if

$$||f||_{p} = \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right)^{1/p} < \infty.$$

Download English Version:

https://daneshyari.com/en/article/4615275

Download Persian Version:

https://daneshyari.com/article/4615275

Daneshyari.com