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Based on numerical data and a-posteriori analysis we verify rigorously the unique-
ness and smoothness of global solutions to a scalar surface growth model with 
striking similarities to the 3D Navier–Stokes equations, for certain initial data for 
which analytical approaches fail. The key point is the derivation of a scalar ODE 
controlling the norm of the solution, whose coefficients depend on the numerical 
data. Instead of solving this ODE explicitly, we explore three different numerical 
methods that provide rigorous upper bounds for its solution.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following surface growth equation for the height u(t, x) ∈ R at time t > 0 over a point 
x ∈ [0, 2π]

ut = −uxxxx − (ux
2)xx x ∈ [0, 2π], t ∈ [0, T ] (1)

with periodic boundary conditions and subject to a moving frame, which yields the zero-average condition ∫ 2π
0 u(x, t) dx = 0.

This equation, usually with additional noise terms, was introduced as a phenomenological model for the 
growth of amorphous surfaces [21,18], and was also used to describe sputtering processes [6]; see [3] for 
a detailed list of references. Based on the papers [4,7,19] which develop the theory of ‘numerical verification 
of regularity’ for the 3D Navier–Stokes equations, our aim here is to establish and implement numerical 
algorithms to prove rigorously global existence and uniqueness of solutions of (1).

Despite being scalar the equation has surprising similarities to 3D Navier–Stokes equations [1–3]. It allows 
for a global energy estimate in L2 and uniqueness of smooth local solutions for initial conditions in a critical 
Besov-type space that contains C0 and H1/2, see [3] (similar results for the 3D Navier–Stokes equations can 
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be found in [9]). Here we focus on the one-dimensional model, since in this case more efficient numerical 
methods are available, and the calculations would be significantly slower in higher dimension. Moreover, 
for the two-dimensional case the situation of energy estimates seems even worse, as global existence could 
only be established in H−1 using the non-standard energy 

∫ 2π
0 eu(x) dx, see [22] for details. Nevertheless, 

we believe that it should be possible to treat the 2D case using similar methods, but the analysis becomes 
more delicate since in two dimensions H1 is the critical space (see [2,3]).

Rigorous methods for proving numerically the existence of solutions for PDEs are a recent and active 
research field. In addition to the approach taken here there are methods based on topological arguments 
like the Conley index, see [11,8,23], for example. For solutions of elliptic PDEs there are methods using 
Brouwer’s fixed-point theorem, as discussed in the review article [17] and the references therein.

Our approach is based on [4] and similar to the method proposed in [14]. The key point is the deriva-
tion of a scalar ODE for the H1-norm of the difference of an arbitrary approximation, that satisfies the 
boundary conditions, to the solution. The coefficients of this ODE depend only on the numerical data (or 
any other approximation used). As long as the solution of the ODE stays finite, one can rely on the con-
tinuation property of unique local solutions, and thus have a smooth unique solution up to a blowup time 
of the ODE. A similar approach using an integral equation based on the mild formulation was proposed in 
[12,13].

In order to establish a bound on the blow-up time for the ODE, one can either proceed analytically 
or numerically. We propose two analytical methods: one, based on the standard Gronwall lemma, enforces 
a ‘small data’ hypothesis and adds little to standard analytical existence proofs. The second is based on 
an explicit analytical upper bound to the ODE solution. A variant of this, a hybrid method in which one 
applies an analytical upper bound on a succession of small intervals of length h > 0 to the numerical 
solution and then restarts the argument, appears the most promising, and a formal calculation indicates 
that the upper bound from the third method in the limit of step-size to zero converges to the solution of 
the ODE.

In order to derive the ODE for the H1-error, we use standard a-priori estimates. While the stability of 
the linear term −uxxxx means that these ‘worst case’ estimates are still sufficient, an interesting alternative 
approach in a slightly different context is proposed in [15,16], where the spectrum of the linearized operator 
(here Lv = −vxxxx +(vxϕx)xx, where ϕ is some given numerical data) is analyzed with a rigorous numerical 
method, which in the case of an unstable linear operator yields substantially better results, at the price of 
a significantly higher computational time. This will be the subject of future research.

The paper is organized as follows. In Section 2 we establish the a-priori estimates for the H1-error between 
solutions and the numerical data, which in the end gives an ODE depending on the numerical data only. 
Section 3 provides the ODE estimates necessary for our three methods, while Section 4 states the main 
results. In the final Section 5, we compare our methods using numerical experiments.

2. A-priori analysis

In this section we establish upper bounds for the H1-norm of the error

d(x, t) := u(x, t) − ϕ(x, t),

where u is a solution to our surface growth equation (1) and ϕ is any arbitrary, but sufficiently smooth 
approximation, that satisfies the boundary conditions. Since we know ϕ, if we can control the H1 norm of d
then we control the H1 norm of u.

For the following estimates and results, we define the Hp-norm, p ≥ 1, of a function u by

‖u‖Hp := ‖∂p
xu‖L2 ,
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