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By introducing a new class of sequences involving iterates of the delay, we are able 
to derive a sharper estimate on the ratio x (τ(t)) /x(t). Based on this, we get some 
new upper bounds for the distance between consecutive zeros of solutions of the 
first order delay differential equation

x′(t) + p(t)x (τ(t)) = 0.

In particular, our results are not covered by previously known results. Some 
examples and a table are given to illustrate our results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we will investigate the upper bound for the distance between consecutive zeros of solutions 
of a first order differential equation with a variable delay of the form

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0, (1.1)

where p(t), τ(t) ∈ C ([t0, ∞), [0, ∞)), τ(t) < t, τ(t) is strictly increasing and lim
t→∞

τ(t) = ∞.
Throughout the remainder of the paper we will need the iterates of the inverses of the functions τ(t). 

For simplicity of notation in the lemmas, theorems, and examples that follow, we use the notation τ0(t) = t

and inductively define the iterates τ−i(t):

τ−i(t) = τ−1
(
τ−(i−1)(t)

)
, i = 1, 2, · · · .
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In general, let C = C([τ(t0), t0] , R) denote the Banach space consisting of all continuous functions from 
[τ(t0), t0] to R, which is also called the Phase Space of Eq. (1.1). Using the method of steps, for the case of 
a constant delay of the form τ(t) = t − τ and τ > 0 is constant, it follows that for every continuous function 
ϕ ∈ C([τ(t0), t0] , R), there exists a unique solution of Eq. (1.1) valid for t ≥ t0. For further questions on 
existence, uniqueness, and continuous dependence, see J.K. Hale [5] and L.H. Erbe [4].

We recall that a solution of Eq. (1.1) is called oscillatory if it has arbitrarily large zeros, otherwise, 
it is called nonoscillatory. Eq. (1.1) is said to be oscillatory if every function that satisfies the equation 
eventually, that is, on the interval [t0, ∞), has arbitrarily large zeros. It is not sufficient only to know that 
some solutions have this behavior. It is well known that Eq. (1.1) is oscillatory provided one of the following 
conditions (see e.g. [1,2,6]) holds:

lim inf
t→∞

t∫
τ(t)

p(s)ds > 1
e

or lim sup
t→∞

t∫
τ(t)

p(s)ds > 1.

There is an obvious gap between the two conditions when the limit lim
t→∞

t∫
τ(t)

p(s)ds does not exist. It is 

therefore interesting to consider the behavior of solutions of Eq. (1.1) under the following conditions (see 
e.g. [1,2,6,11]):

lim inf
t→∞

t∫
τ(t)

p(s)ds ≤ 1
e

and lim sup
t→∞

t∫
τ(t)

p(s)ds ≤ 1. (1.2)

We also obtain some results in these cases.
The purpose of this paper is to obtain a better upper bound estimate for the interval-length of successive 

zeros of the solutions of Eq. (1.1). Recently, there has been an increasing interest in studying the distribution 
of zeros of solutions of first order delay or neutral differential equations. Instead of using the following 
condition (see e.g. [2,3,6–11]) for Eq. (1.1):

lim inf
t→∞

t∫
τ(t)

p(s)ds ≥ ρ > 0, t ≥ t0, (1.3)

in what follows, we shall assume there exists a sequence of nonnegative numbers ρi ≥ 0 for i = 1, 2, · · · , 
such that

τ−1(t)∫
t

p(s1)
t∫

τ(s1)

p(s2) · · ·
τ i−2(t)∫

τ(si−1)

p(si)dsi · · · ds2ds1 ≥ ρi, t ≥ t0. (1.4)

If the condition (1.3) holds, then we can take ρ1 = ρ and ρ2 = ρ2

2! (see e.g. [10,11]). In particular, for the 

following equation with constant coefficient and constant delay

x′(t) + px (t− τ) = 0, t ≥ t0, (1.5)

by a simple calculation, we have
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