The order of magnitude for moments for certain cotangent sums

Helmut Maier ${ }^{\text {a }}$, Michael Th. Rassias ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Ulm, Helmholtzstrasse 18, 89081 Ulm, Germany
b Department of Mathematics, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
${ }^{\text {c }}$ Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA

A R T I C L E I N F O

Article history:

Received 8 December 2014
Available online 15 April 2015
Submitted by B.C. Berndt

Keywords:

Cotangent sums
Equidistribution
Moments
Continued fractions
Measure

Abstract

We settle a question on the rate of growth of the moments of cotangent sums considered by the authors in their previous papers $[7,8]$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The authors in a joint work [7] and the second author in his thesis, investigated the distribution of cotangent sums

$$
c_{0}\left(\frac{r}{b}\right)=-\sum_{m=1}^{b-1} \frac{m}{b} \cot \left(\frac{\pi m r}{b}\right)
$$

as r ranges over the set

$$
\left\{r:(r, b)=1, A_{0} b \leq r \leq A_{1} b\right\}
$$

where A_{0}, A_{1} are fixed with $1 / 2<A_{0}<A_{1}<1$ and b tends to infinity.

[^0]http://dx.doi.org/10.1016/j.jmaa.2015.04.036
0022-247X/© 2015 Elsevier Inc. All rights reserved.

Especially, they considered the moments

$$
H_{k}=\lim _{b \rightarrow+\infty} \phi(b)^{-1} b^{-2 k}\left(A_{1}-A_{0}\right)^{-1} \sum_{\substack{A_{0} b \leq r \leq A_{1} b \\(r, b)=1}} c_{0}\left(\frac{r}{b}\right)^{2 k}, k \in \mathbb{N},
$$

where $\phi(\cdot)$ denotes the Euler phi-function.
They could show that all the moments H_{k} exist and that

$$
\lim _{k \rightarrow+\infty} H_{k}^{1 / k}=+\infty
$$

Thus the series $\sum_{k \geq 0} H_{k} x^{2 k}$ converges only for $x=0$.
It was left open, whether the series

$$
\begin{equation*}
\sum_{k \geq 0} \frac{H_{k}}{(2 k)!} x^{k} \tag{*}
\end{equation*}
$$

converges for values of x different from 0 (cf. [8]). This fact would considerably simplify the proof for the distribution of the cotangent sums $c_{0}(r / b)$ (uniqueness of measures determined by their moments, see [4, Section 30, The Method of Moments, Theorem 30.1]).

Essential for the investigation was the result:

$$
H_{k}=\int_{0}^{1}\left(\frac{g(x)}{\pi}\right)^{2 k} d x
$$

where

$$
g(x)=\sum_{l \geq 1} \frac{1-2\{l x\}}{l} .
$$

The function g has been also investigated in the paper [5] of R. de la Bretèche and G. Tenenbaum. More recently it has also been investigated by M. Balazard and B. Martin [1,2]. We are indebted to M. Balazard for this information. Their ideas, as well as ideas from the paper of S. Marmi, P. Moussa and J.-C. Yoccoz [9] will play an important role in our paper. Independently also S. Bettin [3] investigated this problem and obtained the positivity of the radius of convergence of the series $\left(^{*}\right)$. He could also replace the interval $(1 / 2,1)$ for A_{0}, A_{1} by the interval $(0,1)$. We are thankful to S . Bettin for reading an earlier version of this paper and for providing useful remarks. We shall show the following theorem.

Theorem 1.1. There are constants $c_{1}, c_{2}>0$, such that

$$
c_{1} \Gamma(2 k+1) \leq \int_{0}^{1} g(x)^{2 k} d x \leq c_{2} \Gamma(2 k+1)
$$

for all $k \in \mathbb{N}$, where $\Gamma(\cdot)$ stands for the Gamma function.
Corollary 1.2. The series

$$
\sum_{k \geq 0} \frac{H_{k}}{(2 k)!} x^{k}
$$

has radius of convergence π^{2}.

https://daneshyari.com/en/article/4615301

Download Persian Version:

https://daneshyari.com/article/4615301

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: helmut.maier@uni-ulm.de (H. Maier), michail.rassias@math.ethz.ch, michailrassias@math.princeton.edu (M.Th. Rassias).

