Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The order of magnitude for moments for certain cotangent sums

霐

Helmut Maier^a, Michael Th. Rassias^{b,c,*}

^a Department of Mathematics, University of Ulm, Helmholtzstrasse 18, 89081 Ulm, Germany

^b Department of Mathematics, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

^c Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton,

NJ 08544-1000, USA

ARTICLE INFO

Article history: Received 8 December 2014 Available online 15 April 2015 Submitted by B.C. Berndt

Keywords: Cotangent sums Equidistribution Moments Continued fractions Measure

ABSTRACT

We settle a question on the rate of growth of the moments of cotangent sums considered by the authors in their previous papers [7,8].

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

The authors in a joint work [7] and the second author in his thesis, investigated the distribution of cotangent sums

$$c_0\left(\frac{r}{b}\right) = -\sum_{m=1}^{b-1} \frac{m}{b} \cot\left(\frac{\pi m r}{b}\right),$$

as r ranges over the set

$$\{r : (r,b) = 1, A_0 b \le r \le A_1 b\},\$$

where A_0 , A_1 are fixed with $1/2 < A_0 < A_1 < 1$ and b tends to infinity.

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2015.04.036 0022-247X/© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: helmut.maier@uni-ulm.de (H. Maier), michail.rassias@math.ethz.ch, michailrassias@math.princeton.edu (M.Th. Rassias).

Especially, they considered the moments

$$H_k = \lim_{b \to +\infty} \phi(b)^{-1} b^{-2k} (A_1 - A_0)^{-1} \sum_{\substack{A_0 b \le r \le A_1 b \\ (r,b) = 1}} c_0 \left(\frac{r}{b}\right)^{2k}, \ k \in \mathbb{N},$$

where $\phi(\cdot)$ denotes the Euler phi-function.

They could show that all the moments H_k exist and that

$$\lim_{k \to +\infty} H_k^{1/k} = +\infty.$$

Thus the series $\sum_{k>0} H_k x^{2k}$ converges only for x = 0.

It was left open, whether the series

$$\sum_{k\geq 0} \frac{H_k}{(2k)!} x^k \tag{(*)}$$

converges for values of x different from 0 (cf. [8]). This fact would considerably simplify the proof for the distribution of the cotangent sums $c_0(r/b)$ (uniqueness of measures determined by their moments, see [4, Section 30, The Method of Moments, Theorem 30.1]).

Essential for the investigation was the result:

$$H_k = \int_0^1 \left(\frac{g(x)}{\pi}\right)^{2k} dx,$$

where

$$g(x) = \sum_{l \ge 1} \frac{1 - 2\{lx\}}{l}.$$

The function g has been also investigated in the paper [5] of R. de la Bretèche and G. Tenenbaum. More recently it has also been investigated by M. Balazard and B. Martin [1,2]. We are indebted to M. Balazard for this information. Their ideas, as well as ideas from the paper of S. Marmi, P. Moussa and J.-C. Yoccoz [9] will play an important role in our paper. Independently also S. Bettin [3] investigated this problem and obtained the positivity of the radius of convergence of the series (*). He could also replace the interval (1/2, 1) for A_0 , A_1 by the interval (0, 1). We are thankful to S. Bettin for reading an earlier version of this paper and for providing useful remarks. We shall show the following theorem.

Theorem 1.1. There are constants $c_1, c_2 > 0$, such that

$$c_1 \Gamma(2k+1) \le \int_0^1 g(x)^{2k} \, dx \le c_2 \Gamma(2k+1),$$

for all $k \in \mathbb{N}$, where $\Gamma(\cdot)$ stands for the Gamma function.

Corollary 1.2. The series

$$\sum_{k>0} \frac{H_k}{(2k)!} x^k$$

has radius of convergence π^2 .

Download English Version:

https://daneshyari.com/en/article/4615301

Download Persian Version:

https://daneshyari.com/article/4615301

Daneshyari.com