

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Non-autonomous maximal regularity for forms of bounded variation

Dominik Dier

Institute of Applied Analysis, University of Ulm, 89069 Ulm, Germany

ARTICLE INFO

Article history: Received 11 June 2014 Available online 10 December 2014 Submitted by A. Lunardi

Keywords:
Sesquilinear forms
Non-autonomous evolution equations
Maximal regularity

ABSTRACT

We consider a non-autonomous evolutionary problem

$$u'(t) + A(t)u(t) = f(t), u(0) = u_0,$$

where V,H are Hilbert spaces such that V is continuously and densely embedded in H and the operator $\mathcal{A}(t)\colon V\to V'$ is associated with a coercive, bounded, symmetric form $\mathfrak{a}(t,.,.)\colon V\times V\to \mathbb{C}$ for all $t\in [0,T]$. Given $f\in L^2(0,T;H),\ u_0\in V$ there exists always a unique solution $u\in MR(V,V'):=L^2(0,T;V)\cap H^1(0,T;V')$. The purpose of this article is to investigate whether $u\in H^1(0,T;H)$. This property of maximal regularity in H is not known in general. We give a positive answer if the form is of bounded variation; i.e., if there exists a bounded and non-decreasing function $g\colon [0,T]\to \mathbb{R}$ such that

$$|\mathfrak{a}(t, v, w) - \mathfrak{a}(s, v, w)| \le [g(t) - g(s)] ||v||_V ||w||_V \quad (0 \le s \le t \le T, \ v, w \in V).$$

In that case, we also show that u(.) is continuous with values in V. Moreover we extend this result to certain perturbations of $\mathcal{A}(t)$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The aim of the present article is to study maximal regularity for evolution equations governed by non-autonomous forms. More precisely, let T > 0, let V, H be separable Hilbert spaces such that V is continuously and densely embedded in H and let

$$\mathfrak{a}$$
: $[0,T] \times V \times V \to \mathbb{C}$

E-mail address: dominik.dier@uni-ulm.de.

be a non-autonomous form; i.e., $\mathfrak{a}(t,.,.)$ is sesquilinear for all $t \in [0,T]$ and $\mathfrak{a}(.,v,w)$ is measurable for all $v,w \in V$. Moreover we assume that there exist constants M and $\alpha > 0$ such that

$$|\mathfrak{a}(t, v, w)| \le M \|v\|_V \|w\|_V \quad (t \in [0, T], \ v, w \in V)$$

and

$$\operatorname{Re}\mathfrak{a}(t, v, v) \ge \alpha \|v\|_V^2 \quad (t \in [0, T], \ v \in V).$$

Then for $t \in [0,T]$ we may define the associated operator $\mathcal{A}(t) \in \mathcal{L}(V,V')$ of $\mathfrak{a}(t,...)$ by

$$\langle \mathcal{A}(t)v, w \rangle = \mathfrak{a}(t, v, w) \quad (v, w \in V).$$

Here V' denotes the antidual of V and $\langle ., . \rangle$ denotes the duality between V' and V. Note that $H^1(0, T; V') \hookrightarrow C([0, T]; V')$, so we may identify every element of $H^1(0, T; V')$ by its continuous representative. Now a classical result of Lions (see [8, p. 513], [17, p. 112]) states the following.

Theorem 1.1. For every $f \in L^2(0,T;V')$ and $u_0 \in H$ there exists a unique

$$u \in MR(V, V') := L^2(0, T; V) \cap H^1(0, T; V')$$

such that

$$\begin{cases} u' + \mathcal{A}u = f & \text{in } L^2(0, T; V') \\ u(0) = u_0. \end{cases}$$
 (1.1)

Moreover $MR(V, V') \hookrightarrow C([0, T]; H)$ and

$$||u||_{L^{2}(0,T;V)}^{2} \le \frac{1}{\alpha^{2}} ||f||_{L^{2}(0,T;V')} + \frac{1}{\alpha} ||u_{0}||_{H}^{2}.$$

$$(1.2)$$

Let $f \in L^2(0,T;H)$, $u_0 = 0$ and let $u \in MR(V,V')$ be the solution of (1.1). In the autonomous case; i.e., if $\mathfrak{a}(t,.,.) = \mathfrak{a}(0,.,.)$ for all $t \in [0,T]$, it is well known that u is already in $H^1(0,T;H)$. Thus the question arises whether u is in $H^1(0,T;H)$ also in the non-autonomous case. This question seems still to be open and was explicitly asked by Lions [14, p. 68] in the case that $\mathfrak{a}(t,.,.)$ is symmetric for all $t \in [0,T]$. We say that \mathfrak{a} has maximal regularity in H if for all $f \in L^2(0,T;H)$ and $u_0 = 0$ the solution u of (1.1) is in $H^1(0,T;H)$, and consequently in

$$MR_{\mathfrak{a}}(H):=\big\{u\in L^{2}(0,T;V)\cap H^{1}(0,T;H): \mathcal{A}u\in L^{2}(0,T;H)\big\}.$$

It is easy to see that \mathfrak{a} has maximal regularity in H implies that the solution u of (1.1) is in $H^1(0,T;H)$ for every $f \in L^2(0,T;H)$ and $u_0 \in Tr_{\mathfrak{a}}$, where $Tr_{\mathfrak{a}} := \{v(0) : v \in MR_{\mathfrak{a}}(H)\}.$

In the present article the contribution to this question is the following. Assume additionally that $\mathfrak{a}(t,.,.)$ is symmetric for all $t \in [0,T]$ and of bounded variation; i.e., there exists a bounded and non-decreasing function $g:[0,T] \to \mathbb{R}$ such that

$$\left|\mathfrak{a}(t,v,w)-\mathfrak{a}(s,v,w)\right|\leq \left[g(t)-g(s)\right]\|v\|_V\|w\|_V\quad (0\leq s\leq t\leq T,\ v,w\in V).$$

Then \mathfrak{a} has maximal regularity in H and $Tr_{\mathfrak{a}} = V$. Moreover $MR_{\mathfrak{a}}(H)$ is continuously embedded in C([0,T];V) (see Theorem 4.1). The fact that the solution is continuous with values in V is not obvious at all and plays a central role in the following results. In Theorem 5.1 we extend this regularity result to

Download English Version:

https://daneshyari.com/en/article/4615310

Download Persian Version:

https://daneshyari.com/article/4615310

<u>Daneshyari.com</u>