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In this work we study the homogenization for infinitesimal dislocation based 
gradient viscoplasticity with linear kinematic hardening and general non-associative 
monotone plastic flows. The constitutive equations in the models we study are 
assumed to be only of monotone type. Based on the generalized version of Korn’s 
inequality for incompatible tensor fields (the non-symmetric plastic distortion) due 
to Neff/Pauly/Witch, we derive uniform estimates for the solutions of quasistatic 
initial-boundary value problems under consideration and then using a modified 
unfolding operator technique and a monotone operator method we obtain the 
homogenized system of equations. A new unfolding result for the Curl Curl-operator 
is presented in this work as well. The proof of the last result is based on the 
Helmholtz–Weyl decomposition for vector fields in general Lq-spaces.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study the homogenization of quasistatic initial-boundary value problems arising in gradient viscoplas-
ticity. The models we study use rate-dependent constitutive equations with internal variables to describe 
the deformation behavior of metals at infinitesimally small strain.

Our focus is on a phenomenological model on the macroscale not including the case of single crystal 
plasticity. Our model has been first presented in [42]. It is inspired by the early work of Menzel and 
Steinmann [38]. Contrary to more classical strain gradient approaches, the model features from the outset 
a non-symmetric plastic distortion field p ∈ M3 [10], a dislocation based energy storage based solely on 
|Curl p| (and not ∇p) and therefore second gradients of the plastic distortion in the form of CurlCurl p
acting as dislocation based kinematical backstresses. We only consider energetic length scale effects and not 
higher gradients in the dissipation.

Uniqueness of classical solutions in the subdifferential case (associated plasticity) for rate-independent 
and rate-dependent formulations is shown in [41]. The existence question for the rate-independent model in 
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terms of a weak reformulation is addressed in [42]. The rate-independent model with isotropic hardening is 
treated in [21,42]. The well-posedness of a rate-dependent variant without isotropic hardening is presented 
in [49,50]. First numerical results for a simplified rate-independent irrotational formulation (no plastic spin, 
symmetric plastic distortion p) are presented in [46]. In [26,55] well-posedness for a rate-independent model 
of Gurtin and Anand [28] is shown under the decisive assumption that the plastic distortion is symmetric 
(the irrotational case), in which case one may really speak of a strain gradient plasticity model, since the 
full gradient acts on the symmetric plastic strain.

Let us shortly revisit the modeling ingredients of the gradient plasticity model under consideration. This 
part does not contain new results but is added for clarity of exposition. As usual in infinitesimal plasticity 
theory, the basic variables are the displacement u : Ω → R

3 and the plastic distortion p : Ω → R
3×3. We 

split the total displacement gradient ∇u into non-symmetric elastic and non-symmetric plastic distortions

∇u = e + p.

For invariance reasons, the elastic energy contribution may only depend on the symmetric elastic strains 
sym e = sym(∇u − p). For more on the basic invariance questions related to this issue dictating this type of 
behavior, see [59,40]. We assume as well plastic incompressibility tr p = 0, as is usual. The thermodynamic 
potential of our model is therefore written as

∫
Ω

(
C[x]

(
sym(∇u− p)

)(
sym(∇u− p)

)︸ ︷︷ ︸
elastic energy

+ C1[x]
2 |dev sym p|2︸ ︷︷ ︸

kinematical hardening

+ C2

2 |Curl p|2︸ ︷︷ ︸
dislocation storage

+ u · b︸︷︷︸
external volume forces

)
dx (1)

The positive definite elasticity tensor C is able to represent the elastic anisotropy of the material. The plastic 
flow has the form

∂tp ∈ g
(
σ − C1[x] dev sym p− C2 Curl Curl p

)
, (2)

where σ = C[x] sym(∇u − p) is the elastic symmetric Cauchy stress of the material and g is a multivalued 
monotone flow function which is not necessary the subdifferential of a convex plastic potential (associative 
plasticity). This ensures the validity of the second law of thermodynamics, see [42].

In this generality, our formulation comprises certain non-associative plastic flows in which the yield 
condition and the flow direction are independent and governed by distinct functions. Moreover, the flow 
function g is supposed to induce a rate-dependent response as all materials are, in reality, rate-dependent.

Clearly, in the absence of energetic length scale effects (i.e. C2 = 0), the Curl Curl p-term is absent. 
In general we assume that g maps symmetric tensors to symmetric tensors. Thus, for C2 = 0 the plastic 
distortion remains always symmetric and the model reduces to a classical plasticity model. Therefore, the 
energetic length scale is solely responsible for the plastic spin (the non-symmetry of p) in the model.

Regarding the boundary conditions necessary for the formulation of the higher order theory we assume 
that the so-called micro-hard boundary condition (see [29]) is specified, namely

p× n|∂Ω = 0.

This is the correct boundary condition for tensor fields in L2
Curl-spaces which admits tangential traces. We 

combine this with a new inequality extending Korn’s inequality to incompatible tensor fields, namely
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