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We provide a new method to study the classical Dirichlet problem for constant 
coefficient second order elliptic PDEs on convex polyhedrons. Our approach is 
heavily motivated by Fokas’ unified method for boundary value problems, and can 
be interpreted as the Fourier analogue to the classical boundary integral equations. 
The central object in this approach is the global relation: an integral equation which 
couples the known boundary data and the unknown boundary values. This integral 
equation depends holomorphically on two complex parameters, and the resulting 
analysis takes place on a Banach space of complex analytic functions closely related 
to the classical Paley–Wiener space. We write the global relation in the form of 
an operator equation and show that the analysis can be reduced to the case of 
Laplace’s equation, from which the more general problem turns out to be a compact 
perturbation. We give a new integral representation to the solution to the underlying 
boundary value problem which serves as a concrete realisation of the fundamental 
principle of Ehrenpreis for all constant coefficient elliptic PDEs on convex polyhedra.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ R3 be a convex polyhedron with faces {Σi}ni=1 and let P (D) be a second order constant 
coefficient, elliptic differential operator. Given fi ∈ H1(Σi) for i = 1, . . . , n such that fi = fj on Σi ∩ Σj

we consider the boundary value problem

P (D)u = 0, in Ω, (1a)

u = fi, on Σi for i = 1, . . . , n. (1b)

Here we use the standard notation D = (−i∂1, −i∂2, −i∂3)t. This boundary value problem gives rise to the 
so-called Dirichlet–Neumann map. This linear map is realised by the Steklov–Poincaré operator S, which 
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transforms the known Dirichlet data into the unknown Neumann data [13,16]

S : H1(∂Ω) → L2(∂Ω) : u|∂Ω �→ ∂u/∂n|∂Ω .

We will analyse this map within the framework of Fokas’ unified method for elliptic boundary value prob-
lems [8,10], building on the results in [2,3]. We refer to [6] for a more traditional treatment of elliptic 
boundary value problems on polyhedra. Within Fokas’ unified approach is the global relation: an integral 
equation defined on the set

ZP =
{
λ ∈ C3 : P (λ) = 0

}

that couples the unknown boundary values ∂u/∂ni|Σi
and the known boundary data fi. In Section 2 we 

construct the global relation for the boundary value problem (1) and write it in terms of an abstract 
operator equation TΦ = Ψ , where the vector Φ is related to the unknown Neumann boundary values and 
the vector Ψ is a known function of the Dirichlet boundary data. Functional analytic properties of the 
operator T : X → Y , for appropriate Banach spaces X, Y , are obtained in Section 3 and it is these results 
that allow us to prove well-posedness of the underlying boundary value problem. In Section 4 we offer a 
practical Galerkin method based on this approach that can be used to obtain approximate solutions.

In addition to studying the Dirichlet–Neumann map via the global relation, we also provide new integral 
representations for the solutions to the boundary value problem (1). In Section 5 we show that u satisfies (1)
iff

u(x) = 1
8π2

n∑
i=1

∫
Zi

eiμ·xρi(μ) dνi(μ), x ∈ Ω,

where each Zi is a known subset of ZP and the functions ρi and measures dνi are known explicitly in terms 
of the boundary values of u. These integral representations serve as a concrete realisation of the (abstract) 
fundamental principal of Ehrenpreis [7] which states that any solution to a constant coefficient PDE on a 
convex domain can be written as the superposition of exponential solutions.

The results in this paper serve to extend the highly acclaimed unified method of Fokas for elliptic boundary 
value problems [10]. This method has proved to be a highly efficient way of analysing constant coefficient 
elliptic equations on planar domains. The first steps in extending this method to three dimensional elliptic 
boundary value problems were produced in [3] for the special case of Laplace’s equation. We build on these 
recent results to extend the unified method to all constant coefficient elliptic boundary value problems on 
three dimensional convex polyhedra. For boundary value problems for evolution PDEs in 2 + 1 dimensions 
via the unified approach, we refer the reader to [9,11,15].

A note on generality The most general real, second order, constant coefficient elliptic differential operator 
has the form

3∑
i,j=1

AijDiDj +
3∑

i=1
BiDi + C

where Aij is symmetric and positive definite. By a simple linear change of coordinates (a rotation followed 
by a scaling of the coordinate axes), this operator can be written in the form

3∑
i=1

δijDiDj +
3∑

i=1
biDi + c
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