

Logarithmic Harnack inequalities for homogeneous graphs

Shoudong Man ${ }^{1}$
Department of Mathematics, School of Information, Renmin University of China, Beijing, 100872, China

A R T I C L E I N F O

Article history:
Received 2 February 2013
Available online 19 December 2014
Submitted by H.R. Parks

Keywords:

Laplace operator
Curvature-dimension type inequality Logarithmic Harnack inequality

Abstract

In this paper, we prove logarithmic Harnack inequalities for homogeneous graphs. As a consequence, we derive lower estimates for the log-Sobolev constant, extending previous results for Ricci flat graphs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Suppose G is a graph with vertex set V and edge set E. The degree of vertex x, denoted by d_{x}, is the number of edges connected to x. If for every vertex x of V, d_{x} is finite, we say that G is a locally finite graph. The distance between two vertices is the minimum number of edges to connect them, while the diameter of G is the maximum of all the distances of the graph. We denote $x \sim y$ if vertex x is adjacent to vertex y, and $\mu_{x y}$ is the edge weight. Moreover, suppose a group χ acts on V such that:
(i) for all $a \in \chi,\{a u, a v\} \in E$ if and only if $\{u, v\} \in E$;
(ii) for any two vertices u and v, there is an $a \in \chi$ such that $a u=v$.

Then we say G is a homogeneous graph with the associated group χ. Furthermore, we describe the edge set by an edge generating set $K \subset \chi$, then, for some $v \in V$ and $a \in K$, each edge of G is of the form $\{v, a v\}$. We let K consist of k generators and require K to be symmetric, i.e., $a \in K$ if and only if $a^{-1} \in K$. If for every element $a \in K$, we have $a K a^{-1}=K$, we say that a homogeneous graph is invariant. If χ is abelian, we say G is an abelian homogeneous graph.

[^0]Let $V^{R}=\{f \mid f: V \rightarrow R\}$, and the Laplace operator \mathcal{L} of a graph G be

$$
\mathcal{L} f(x)=\frac{1}{k} \sum_{a \in K}[f(x)-f(a x)], \quad \forall f \in V^{R} .
$$

Suppose a function $f: V \rightarrow R$ satisfies $\mathcal{L} f(x)=\lambda f(x)$, then f is called an eigenfunction of Laplace operator \mathcal{L} on graph G with eigenvalue λ, and we can easily note that 0 is a trivial eigenvalue of \mathcal{L} associated with the constant eigenfunction.

According to Bakry and Emery [1], we can define a bilinear operator $\Gamma: V^{R} \times V^{R} \rightarrow V^{R}$ by

$$
\Gamma(f, g)(x)=\frac{1}{2}\{f(x) \mathcal{L} g(x)+g(x) \mathcal{L} f(x)-\mathcal{L}(f(x) g(x))\}
$$

and then the Ricci curvature operator on graphs Γ_{2} by iterating Γ as

$$
\Gamma_{2}(f, g)(x)=\frac{1}{2}\{\Gamma(f, \mathcal{L} g)(x)+\Gamma(g, \mathcal{L} f)(x)-\mathcal{L} \Gamma(f, g)(x)\}
$$

More explicitly, we have

$$
\begin{gathered}
\rho(x)=\frac{1}{k} \sum_{a \in K}[f(x)-f(a x)]^{2}, \\
\Gamma(f, f)(x)=\frac{1}{2} \rho(x)=\frac{1}{2} \cdot \frac{1}{k} \sum_{a \in K}[f(x)-f(a x)]^{2} .
\end{gathered}
$$

Definition 1.1. The operator \mathcal{L} satisfies the curvature-dimension type inequality $C D(m, \xi)$ for some $m>1$ if for every $f \in V^{R}$,

$$
\Gamma_{2}(f, f)(x) \geq \frac{1}{m}(\mathcal{L} f(x))^{2}+\xi \Gamma(f, f)(x)
$$

We call m the dimension of the operator \mathcal{L} and ξ the lower bound of the Ricci curvature of the operator \mathcal{L}. It is easy to see that for $m<\tilde{m}$, the operator \mathcal{L} satisfies $C D(\tilde{m}, \xi)$ if it satisfies $C D(m, \xi)$.

If $\Gamma_{2}(f, f)(x) \geq \xi \Gamma(f, f)(x)$, we say that \mathcal{L} satisfies $C D(\infty, \xi)$.
In 1994, F. Chung and S.T. Yau in [4] established the following Harnack inequality as in [2] for homogeneous graphs and subgraphs G with edge generating set K consisting of k generators,

$$
\frac{1}{k} \sum_{a \in K}[f(x)-f(a x)]^{2}+\alpha \lambda f^{2}(x) \leq \frac{\lambda \alpha^{2}}{\alpha-2} \sup _{y \in K} f^{2}(y)
$$

for any $\alpha>2$ and $x \in V$, and using this Harnack inequality, they derived lower bounds for the Neumann eigenvalues and the Dirichlet eigenvalues in [4] and [6] respectively.

In 1996, F.R.K. Chung and S.T. Yau in [5] proved the logarithmic Harnack inequality for Ricci flat graphs. In fact, a homogeneous graph associated with an abelian group is Ricci flat such as in [5]. Furthermore, they derived a lower bound for the log-Sobolev constant of Ricci flat graphs using the logarithmic Harnack inequality.

In 2010, Y. Lin and S.T. Yau introduced in [7] the curvature-dimension type inequality $C D(m, \kappa)$ and proved that any locally finite connected graph satisfies either $C D\left(2, \frac{2}{d}-1\right)$ if d is finite, or $C D(2,-1)$ if d is infinite, where $d=\sup _{x \in V} \sup _{y \sim x} \frac{d_{x}}{\mu_{x y}}$. They also proved that the Ricci flat graphs have the non-negative Ricci curvature in the sense of Bakry and Emery. In fact, in most cases, the Ricci curvature is zero, except

https://daneshyari.com/en/article/4615332

Download Persian Version:
https://daneshyari.com/article/4615332

Daneshyari.com

[^0]: E-mail address: shoudongmanbj@ruc.edu.cn.
 ${ }^{1}$ This author was supported by the grant of China Scholarship Council (CSC) (Grant No. 201306360100).

