

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Oscillation and integral norms of coefficients in second-order differential equations

Caitlin Klimas, Dennis Stowe*

Mathematics Department, Idaho State University, Pocatello, ID 83209, United States

ARTICLE INFO

Article history: Received 23 July 2014 Available online 29 December 2014 Submitted by P. Sacks

Keywords:
Second-order differential equation
Oscillation
Sturm comparison theorem

ABSTRACT

By theorems of Sturm and Lyapunov, the L^{∞} and L^1 norms of the coefficient q in a differential equation u'' + q(t)u = 0 limit the oscillation of nontrivial solutions. This paper establishes similar results for the L^p norms when 1 .

© 2014 Elsevier Inc. All rights reserved.

For real differential equations u'' + q(t)u = 0, the size of the coefficient function limits the frequency with which nontrivial solutions can vanish. Classical instances of that principle include the following (see pp. 334 and 346 of [4]):

Theorem (Sturm, Lyapunov). If q is continuous and a < b are zeroes of a nontrivial solution of u'' + q(t)u = 0, then

$$\max_{t \in [a,b]} q(t) \ge \frac{\pi^2}{(b-a)^2}, \qquad \int_a^b \max\{q(t),0\} \, dt > \frac{4}{b-a}.$$

The former bound is attained when $u(t) = \sin(\pi(t-a)/(b-a))$. Lyapunov's bound is also optimal, as Theorem 9 in Section 4 will confirm. Further instances of the principle appear in [2] and [1].

Under the stated hypotheses, the L^{∞} and L^{1} norms of q in [a, b] satisfy

$$||q||_{\infty} := \max_{t \in [a,b]} |q(t)| \ge \frac{\pi^2}{(b-a)^2}, \qquad ||q||_1 := \int_a^b |q(t)| \, dt > \frac{4}{b-a}.$$

E-mail address: stowdenn@isu.edu (D. Stowe).

^{*} Corresponding author.

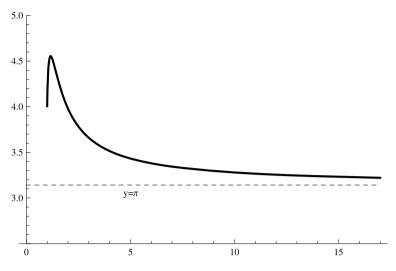


Fig. 1. The function β .

The present paper establishes similar bounds for the L^p norms when 1 . The essential question here is: If a continuous function <math>q in $[0, \infty)$ satisfies $\int |q|^p \le 1$ and u is the solution of u'' + qu = 0 with (u, u')(0) = (0, 1), how small can the first positive zero of u be? It can certainly be less than 10, regardless of p, as one sees by considering functions q that equal $1/\pi^2$ throughout $[0, \pi^2]$ and drop rapidly to zero thereafter. We therefore work in [0, 10] rather than $[0, \infty)$. We also replace the initial-value problem with the equivalent integral equation

$$u(t) + \int_{0}^{t} (t-s)q(s)u(s) ds = t, \quad t \in [0, 10],$$

and allow q to range over the closed unit ball in $L^p[0, 10]$. As will be shown, the integral equation makes sense even then as a condition on $u \in C[0, 10]$ and has a unique solution $u = u_q$ in that space. (See Fig. 1.)

Theorem 1. Let $W = \{q \in L^p[0, 10] : ||q||_p \le 1\}$, where $1 . The infimum <math>\beta = \inf\{z \in (0, 10] : u_q(z) = 0 \text{ for some } q \in W\}$ is given by

$$\beta = \beta(p) := \left\{ \frac{(2p-1)^{2p-1}}{p^p(p-1)^{(p-1)}} \cdot B\left(\frac{3p-1}{2p}, \frac{1}{2}\right)^{2p} \right\}^{1/(2p-1)},$$

where $B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$. Furthermore, there is a unique element $q \in W$ such that $u_q(\beta) = 0$. That element is represented by a continuous function that is positive throughout $(0,\beta)$ and zero elsewhere, and $||q||_p = 1$.

Identities such as $x\Gamma(x) = \Gamma(x+1)$ and $B(x,\frac{1}{2}) = 2^{2x-1}B(x,x)$ (see §9.2–9.4 of [3]) support other formulas for $\beta(p)$, but the one here seems as simple and informative as any.

Corollary 2. If q is continuous and a < b are zeroes of a nontrivial solution of u'' + q(t)u = 0, then the norms $||q||_p = (\int_a^b |q(t)|^p dt)^{1/p}$ for 1 satisfy

$$||q||_p \ge \left(\frac{\beta(p)}{b-a}\right)^{(2p-1)/p} = \frac{(2p-1)^{(2p-1)/p}}{p(p-1)^{(p-1)/p}} \cdot \frac{B((3p-1)/(2p), 1/2)^2}{(b-a)^{(2p-1)/p}}.$$

Download English Version:

https://daneshyari.com/en/article/4615335

Download Persian Version:

https://daneshyari.com/article/4615335

<u>Daneshyari.com</u>