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Sturm comparison theorem

For real differential equations u” + q(¢)u = 0, the size of the coefficient function limits the frequency with
which nontrivial solutions can vanish. Classical instances of that principle include the following (see pp. 334
and 346 of [4]):

Theorem (Sturm, Lyapunov). If q is continuous and a < b are zeroes of a nontrivial solution of u' +
q(t)u =0, then
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The former bound is attained when u(t) = sin(n(t — a)/(b — a)). Lyapunov’s bound is also optimal, as
Theorem 9 in Section 4 will confirm. Further instances of the principle appear in [2] and [1].
Under the stated hypotheses, the L> and L' norms of ¢ in [a, b] satisfy
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Fig. 1. The function 3.

The present paper establishes similar bounds for the LP norms when 1 < p < co. The essential question
here is: If a continuous function ¢ in [0, 00) satisfies [ |¢|P < 1 and w is the solution of v + qu = 0 with
(u,u')(0) = (0,1), how small can the first positive zero of u be? It can certainly be less than 10, regardless
of p, as one sees by considering functions ¢ that equal 1/72 throughout [0,7%] and drop rapidly to zero
thereafter. We therefore work in [0, 10] rather than [0, 00). We also replace the initial-value problem with
the equivalent integral equation

t
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and allow ¢ to range over the closed unit ball in LP[0,10]. As will be shown, the integral equation makes

sense even then as a condition on u € C[0,10] and has a unique solution u = u, in that space. (See Fig. 1.)

Theorem 1. Let W = {q € L?[0,10] : ||q||, < 1}, where 1 < p < oo. The infimum = inf{z € (0,10] :
uq(2) =0 for some ¢ € W} is given by
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where B(z,y) = I'(z)I'(y)/I'(x + y). Furthermore, there is a unique element ¢ € W such that u,(8) = 0.
That element is represented by a continuous function that is positive throughout (0, ) and zero elsewhere,

and ||qll, = 1.

Identities such as zI'(z) = I'(z + 1) and B(z,1) = 22?7 1B(z,z) (see §9.2-9.4 of [3]) support other
formulas for B(p), but the one here seems as simple and informative as any.

Corollary 2. If q is continuous and a < b are zeroes of a nontrivial solution of v’ + q(t)u = 0, then the
norms ||ql|l, = f lq(t)|P dt) /P for 1 < p < oo satisfy
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