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Probabilistic independence, intended as the mutual irrelevance of given variables, 
can be solidly founded on a notion of self-consistency of an uncertainty model, in 
particular when probabilities go imprecise. There is nothing in this approach that 
prevents it from being adopted in very general setups, and yet it has mostly been 
detailed for variables taking finitely many values. In this mathematical study, we 
complement previous research by exploring the extent to which such an approach 
can be generalised. We focus in particular on the independent products of two 
variables. We characterise the main notions, including some of factorisation and 
productivity, in the general case where both spaces can be infinite and show that, 
however, there are situations—even in the case of precise probability—where no 
independent product exists. This is not the case as soon as at least one space is 
finite. We study in depth this case at the frontiers of good-behaviour detailing the 
relations among the most important notions; we show for instance that being an 
independent product is equivalent to a certain productivity condition. Then we 
step back to the general case: we give conditions for the existence of independent 
products and study ways to get around its inherent limitations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Independence is a founding notion for very many probabilistic models and applications. Despite its 
widespread use, there are substantial aspects of this notion that are still troublesome, in particular when 
we stick to the traditional approach to defining independence—the one based on requiring that a joint 
probability factorises. To make an example, if we say that events A and B are independent when P (A ∩B) =
P (A)P (B), what we get is that A is independent of any other event B if P (A) = 0, including the event 
B = Ac! This happens because the traditional definition neglects the issues originated by zero probabilities. 
This affects the case of finite spaces of possibility and even more the models based on infinite spaces, where 
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it is very common that each element in the space has zero probability. The situation becomes more complex 
when we consider models that allow for imprecisely specified probabilities. In this case an event A has both 
a lower probability P (A) and an upper probability P (A), so it can happen that P (A) = 0 < P (A). It is 
clear that in this case we should have a uniform way to deal with independence that works irrespective 
of the positivity of probabilities. The imprecise case poses a series of other challenges as well: it has been 
shown that there are many possible definitions of independence in such a generalised setup [2,7]; very often 
imprecise probability models are made of sets of finitely additive probabilities, which create additional 
complications w.r.t. the more regular countably additive probabilities.

It has been Walley to illustrate [24, Chapter 9] that all these issues can be nicely and uniformly addressed 
by a shift of paradigm in the way we define independence. Walley’s approach is based on joining two 
pre-existing ideas. The first, which has its roots in the subjective approach to probability, as well as in 
the artificial intelligence community, is regarding independence as the mutual irrelevance of two events (or 
variables). The second, especially due to de Finetti, is that probabilistic models can be founded on a notion 
of self-consistency—most often called coherence. In this paper we shall, for the most part, refer to Walley’s 
coherence notion [24, Section 7.1.4(b)]. We can think of coherence as a stronger way to define probabilistic 
models than through a joint distribution. In fact, the existence of a joint distribution compatible with some 
marginal and conditional distributions, can equivalently be formulated as a self-consistency requirement, 
which is however weaker than coherence (see, e.g., [17, Section 4]). This weakness shows up dramatically 
just when there are events with zero probability, when we work in infinite spaces, when we deal with finitely 
additive probabilities, and of course also when we deal with imprecise probability. This is the reason why 
the stronger notion of coherence is at the basis of a more powerful approach to defining independence.

So how do we formulate independence through coherence? Consider variables X1 and X2, taking values 
from X1 and X2, respectively. We just say that a joint probabilistic model for these variables is an independent 
product of the marginal information we have about X1 and X2 if it is coherent with our assessment that 
knowledge of one of the two variables does not affect knowledge about the other variable. It is an independent 
product, in other words, if it is not inconsistent with two assessments of irrelevance: the irrelevance of X1
to X2 and of X2 to X1. Given that coherence is a notion defined under very general assumptions, we have 
automatically a well-posed way to discuss the notion of independence across all the situations mentioned 
above. As we said, approaching independence from the point of view of coherence has its roots in Walley’s 
seminal book, which laid down the main ideas. Vicig [22] then pursued similar ideas using a weaker notion 
of coherence by Williams [25] (we call it W-coherence); his work addressed the case of infinite spaces of 
possibility, while restricting the attention to the special case of lower probabilities rather than expectations 
(or, as we call them, previsions). Finally, de Cooman and ourselves [10,12] have studied the case of finite 
spaces of possibility, while allowing for more than two variables; the work focused in particular on the 
least-committal (or least precise, or weakest) independent product, which is called the independent natural 
extension, and on ways to relate it to different forms of factorisation. The independent natural extension is 
an important concept as it is the only independent product that is solely based on the mutual irrelevance 
of the variables under consideration.

In this paper, we analyse the independent products of two variables aiming at the greatest possible 
generality—thus covering the case of infinite spaces of possibility—as well as at establishing firm relations 
with known notions of factorisation—thus investigating the extent to which the traditional notion of inde-
pendence and the notion based on coherence are compatible. After some preliminary concepts are given in 
Section 2, we start work on independent products in Section 3. First, we remark by an example that two 
given marginals may not admit any independent product when both spaces X1, X2 are infinite, not even 
in the case of precise probability: this shows that there are limits to the possibility to define independence 
in the general case. As a consequence, the independent natural extension may not exist either, unlike the 
case of finite spaces [12]. Yet, when it exists, we show that it can be characterised as the intersection of the 
two sets of probabilities that express irrelevance of X1 to X2 and of X2 to X1: this is a remarkably simple 
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