
The Journal of Systems and Software 87 (2014) 74– 86

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me p age: www.elsev ier .com/ locate / j ss

Surviving sensor node failures by MMU-less incremental
checkpointing

Hsung-Pin Changa,∗, Yen-Ting Liub, Shang-Sheng Yangb

a Department of Computer Science and Engineering, National Chung Hsing University, Taichung, Taiwan, ROC
b Institute of Networking and Multimedia, National Chung Hsing University, Taichung, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 16 October 2012
Received in revised form 3 September 2013
Accepted 3 September 2013
Available online 13 September 2013

Keywords:
Checkpointing
Incremental checkpointing
SOS

a b s t r a c t

For some critical safety applications, sensor nodes embed valuable information, and they should be able
to operate unattended and unfailing for several months or years. One promising solution is to adopt a
checkpointing that periodically saves the state of a sensor node, thereby maintaining node reliability and
network availability. Thus, this study first shows the design and implementation of a full checkpointing
for WSNs. However, checkpointing is expensive. Therefore, incremental checkpointing was previously
proposed to eliminate the checkpoint overhead by relying on the page protection hardware to identify
dirty pages. Because sensor nodes are resource-constrained and do not equip with the page protection
hardware, previous incremental checkpointings cannot be directly applied. To address this issue, this
paper proposes three incremental checkpointings for WSNs. These three methods differ in the granu-
larity of the checkpoint memory data unit and module execution overhead. In addition, we designed an
incremental checkpoint file format that simultaneously supports proposed three different incremental
checkpointings and accommodates them with sensor network characteristics. We implemented the full
and three incremental checkpointings on SOS in the mica2 sensor motes. A performance evaluation of
the three incremental checkpointings is presented. We also discuss and evaluate a method for selecting
the appropriate incremental checkpointing. To the best of our knowledge, this study is the first to design
and implement incremental checkpointing in MMU-less WSNs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In general, sensor nodes are expected to be autonomous and
long lasting. However, hardware reliability poses a major chal-
lenge to this expectation (Borkar, 2005). Because of large-scale
deployment, hardware fails in sensor nodes are highly possible. The
problem is highlighted because sensor nodes are likely to inter-
act closely with their physical environment that may be harsh
or hostile (Pompili et al., 2006; Werner-Allen et al., 2006; Talzi
et al., 2007), rendering the hardware components more failure-
prone. Notably, hardware failures can be permanent or transient. In
this paper, we address the fail-stop permanent hardware failures.
In general, the ability to respond to a fail-stop hardware failure
requires physical access to a node. Unfortunately, WSNs are often
deployed in locations away from easy human access. Once sensor
nodes are deployed, it is impractical and at times even impossible
to physically access each individual node.

∗ Corresponding author. Tel.: +886 4 22852106; fax: +886 4 22853869.
E-mail addresses: hpchang@cs.nchu.edu.tw (H.-P. Chang), hylswind@gmail.com

(Y.-T. Liu), b3c4d5e6f7@hotmail.com (S.-S. Yang).

However, for some emergency or surveillance applications, e.g.,
medical care (Lorincz et al., 2004) and fire rescue (Tseng et al., 2006),
node failure is unacceptable. Unexpected hardware failures could
cause problems ranging from financial impact to loss of life. Even
for normal applications, some sensor nodes, such as the grid heads
that are responsible for maintaining routing tables and forwarding
sensor data to the sink (Chi and Chang, 2012), have important roles
in WSNs. As a result, the failure of these nodes could render the
sensor network useless, and at worst, lead to the collapse of the
entire network. Therefore, a failure-resilient mechanism that can
recover from hardware failures is imperative for some sensor nodes
and sensor network applications.

To realize a fault-tolerant operation, one possible solution is to
use a space-redundant technique so that the system can continue
to operate when a hardware component fails. Therefore, on the
basis of mica2 motes (Mica motes), we proposed a dual-motes sen-
sor node architecture that connects two motes, a primary and a
backup node, using a RS-232 link (Yeh, 2009). In general, the pri-
mary node is active and the backup node lies dormant, drawing
just a small current. Once the primary node fails, the backup node
is activated to perform the task of primary node, thereby maintain-
ing node reliability and network availability. However, the primary
node may contain important information. Along with the failure of

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.09.001

dx.doi.org/10.1016/j.jss.2013.09.001
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.09.001&domain=pdf
mailto:hpchang@cs.nchu.edu.tw
mailto:hylswind@gmail.com
mailto:b3c4d5e6f7@hotmail.com
dx.doi.org/10.1016/j.jss.2013.09.001

H.-P. Chang et al. / The Journal of Systems and Software 87 (2014) 74– 86 75

the primary node, this information, which is crucial in some appli-
cations, would also be lost. To further illustrate this problem, we
study a representative scenario as follows.

1.1. Scenario: theft detection application

S. Guha et al. proposed the AutoWitness system to deter, detect,
and track personal property theft (Guha et al., 2012). A property
owner embeds a small Tag Node inside the asset to be protected,
e.g., a television. If the Tag Node detects vehicular movement, it
determines that the asset is stolen and begins to estimate the
sequence of movements, stops, and turns. These estimates are
stored locally until a cellular network connection is available, at
which time the Tag Node is connected to a server to calculate the
most probable route and resting destination.

In the above scenario, crucial information is embedded in the
Tag Node. If the Tag Node fails, the crucial information is lost and
the stolen asset cannot be found easily. To solve the problem, we can
implement a checkpoint mechanism on the basis of the dual-motes
sensor nodes. The primary node periodically makes a checkpoint of
the current state to the backup node. Once the backup node detects
that the primary node has failed, for example, using beacon mes-
sages or sophisticated fault detection schemes (Guo et al., 2009;
Yeh, 2009), it substitutes the primary node and rolls back to the
most recent checkpoint. However, checkpointing is an expensive
operation. Therefore, many improvements have been proposed to
reduce the checkpoint overhead (Plank, 1997). One of the well-
known optimization schemes is incremental checkpointing, which
utilizes the page protection hardware to identify the unchanged
portion of a checkpoint and saves only the changed portion to
reduce the amount of data written to the stable storage. Unfortu-
nately, sensor nodes usually do not have the memory management
unit (MMU). MMUs must contain page tables and the associated
logic, which have significant impact on area, run-time, and power.
Of these, power consumption is an area of concern because memory
protection hardware must be activated for every memory refer-
ence instruction (Biswas et al., 2006). As a result, legacy incremental
checkpointing cannot be applied in WSNs.

In contrast to the previous hardware-assisted solution, we
propose software-based incremental checkpointing. However, the
design and implementation of software-based incremental check-
pointing faces various challenges. First, sensor nodes are usually
highly resource constrained in terms of CPU, persistent stor-
age, and most importantly, power. Second, WSNs are applied in
numerous applications, and for a WSN application, different sensor
nodes would play different roles. Thus, the proposed software-
based incremental checkpointing must be able to accommodate
WSNs with different applications and nodes playing different roles.
Finally, sensor nodes usually employ solid-state flash memory for
persistent storage. However, it is well-known that flash memory
has the write endurance issue; repeated writes to the flash memory
quickly exhaust the flash memory’s lifetime.

Thus, the objective of this study is to design and implement
an efficient, flexible, and flash-aware incremental checkpointing
for micro sensor platforms. In particular, the main contributions
of this study can be summarized as follows. First, we pro-
pose three software-based incremental checkpointings for WSNs:
scheduler-based, icall-based, and store-based checkpointing. These
three incremental checkpointings differ in the module execution
overhead and checkpoint size, which in turn results in different
CPU and I/O costs. Thus, on the basis of application characteris-
tics, different application modules can choose different incremental
checkpointings to minimize the total checkpoint overhead. Fur-
thermore, we propose two optimization schemes to minimize the
module execution overhead for store-based incremental checkpoint-
ing. In addition, we address the implementation issue for the three

proposed solutions to minimize the checkpoint cost. Finally, we
design a flash-aware incremental checkpoint file format to accom-
modate the flash memory characteristics. We implemented these
three incremental checkpointings in the mica2 motes on the SOS
kernel (Han et al., 2005) and presented a detailed performance eval-
uation. To the best of our knowledge, this study is the first that
focuses on the design and implementation of incremental check-
pointing in MMU-less WSNs.

The remainder of this paper is organized as follows. Section 2
describes the previous checkpointings and introduces the SOS oper-
ating system. Section 3 presents the design and implementation
of our full checkpointing and three incremental checkpointings. In
addition, the full and incremental checkpoint file formats are also
presented. The experimental results are shown in Section 4. Finally,
Section 5 provides conclusions and future work.

2. Background

In Section 2.1, we first present the related work that also deals
with the failures of the sensor nodes. Then, we review legacy check-
point schemes. In particular, we perform a review of incremental
checkpointing in Section 2.2. Finally, because our work is based on
the SOS operating system, we introduce SOS in Section 2.3.

2.1. Related work dealing with the failures of sensor nodes

To deal with the failure of the sensor nodes, one possible solu-
tion is to deploy a sensor network with a set of additional nodes to
repair the network in the event that sensor nodes fail. For example,
FTSHM (Fault Tolerance in Structural Health Monitoring) searches
the strategic locations of a structure and places additional nodes at
these locations, so as to repair the network to guarantee a specified
degree of fault tolerance (Bhuiyan et al., 2012). Similarly, a variety
of protocols proposed to achieve k-coverage or k-connectivity to
tolerate sensor faults (Zhou et al., 2004). Notably, a k-coverage net-
work means each location in a field is covered by at least k sensors
(Ammari and Das, 2012), while a k-connected network requires
k node failures to disconnect the network (Bredin et al., 2010).
To tolerate node failures, they compute the locations where an
approximately minimum number of backup nodes are deployed
to maintain k-coverage or k-connectivity.

Besides, when some of the sensor nodes fail, some areas can
become unavailable. As a result, the routing of sensor data could
encounter errors. To address this problem, researches have pro-
posed the multi-path routing and hole detection and detouring
algorithms (Gao et al., 2011; Lee et al., 2010). Nevertheless, all of
the above fault management schemes do not consider the state loss
problem. As a result, when a node fails, the valuable state embedded
in it is lost.

2.2. Checkpointing

Checkpointing aims to provide recovery capability for applica-
tion programs. However, the cost of checkpointing is high. Thus,
many techniques have been proposed to reduce the checkpoint
overhead. In general, these techniques can be classified in two cat-
egories (Plank et al., 1999). The first is the latency hiding technique
that attempts to hide the execution of checkpointing from appli-
cation programs. Well-known examples are forked checkpointing
and copy-on-write checkpointing (Plank et al., 1995). The other
approach is the size reduction technique that aims to minimize the
amount of checkpoint data. Examples include incremental check-
pointing (Plank et al., 1995) and memory exclusion checkpointing
(Plank et al., 1999).

Of these techniques, incremental checkpointing is especially
attractive. Incremental checkpointing utilizes the page protection

Download English Version:

https://daneshyari.com/en/article/461536

Download Persian Version:

https://daneshyari.com/article/461536

Daneshyari.com

https://daneshyari.com/en/article/461536
https://daneshyari.com/article/461536
https://daneshyari.com

