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We investigate the Westervelt equation with several versions of nonlinear damping 
and lower order damping terms and Neumann as well as absorbing boundary 
conditions. We prove local in time existence of weak solutions under the assumption 
that the initial and boundary data are sufficiently small. Additionally, we prove local 
well-posedness in the case of spatially varying L∞ coefficients, a model relevant in 
high intensity focused ultrasound (HIFU) applications.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

High intensity focused ultrasound (HIFU) is crucial in many medical and industrial applications including 
lithotripsy, thermotherapy, ultrasound cleaning or welding and sonochemistry. Widely used mathematical 
model for nonlinear wave propagation is the Westervelt equation, which can either be written in terms of 
the acoustic pressure p

(1 − 2kp)ptt − c2Δp− bΔpt = 2k(pt)2, (1.1)

or in terms of the acoustic velocity potential ψ

(1 − 2k̃ψt)ψtt − c2Δψ − bΔψt = 0, (1.2)

with �ψt = p. Here, c denotes the speed and b the diffusivity of sound, k = βa/λ, βa = 1 + B/(2A), 
B/A represents the parameter of nonlinearity, � is the mass density, λ = �c2 is the bulk modulus and 
k̃ = �k. For a detailed derivation of (1.1) and (1.2) we refer the reader to [4,9,13].

E-mail address: vanja.nikolic@aau.at.

http://dx.doi.org/10.1016/j.jmaa.2015.02.076
0022-247X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2015.02.076
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:vanja.nikolic@aau.at
http://dx.doi.org/10.1016/j.jmaa.2015.02.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.02.076&domain=pdf


1132 V. Nikolić / J. Math. Anal. Appl. 427 (2015) 1131–1167

Well-posedness and exponential decay of small and H2-spatially regular solutions is established for the 
Westervelt equation with homogeneous [6] and inhomogeneous [8] Dirichlet and Neumann [7] boundary 
conditions as well as with boundary instead of interior damping [5].

A significant task in the analysis of the Westervelt equation is avoiding degeneracy of the coefficient 
1 − 2kp for the second time derivative ptt in (1.1) and, similarly, of the term 1 − 2k̃ψt in the formula-
tion (1.2). At the same time, in applications the existence of spatially less regular solutions is important, 
e.g. in the coupling of acoustic with acoustic or elastic regions with different material parameters. In [2], 
Brunnhuber, Kaltenbacher and Radu treated this issue by introducing nonlinear damping terms to the 
Westervelt equation and considering the following equations

(1 − 2ku)utt − c2Δu− b div
(
((1 − δ) + δ|∇ut|q−1)∇ut

)
= 2k(ut)2, (1.3)

(1 − 2ku)utt − c2div(∇u + ε|∇u|q−1∇u) − bΔut = 2k(ut)2, (1.4)

utt −
c2

1 − 2k̃ut

Δu− b div
(
((1 − δ) + δ|∇ut|q−1)∇ut

)
= 0, (1.5)

with homogeneous Dirichlet boundary data. First two equations are derived from the Westervelt equation 
in the acoustic pressure formulation (1.1), while the third equation comes from the acoustic potential 
formulation (1.2) (with the notation changed to p → u, ψ → u). Added nonlinear damping terms make 
obtaining L∞(0, T ; L∞(Ω)) estimate on u (ut) possible, without the need to estimate Δu (Δut) and thus 
refraining from too high regularity.

The central aim of the present paper is to investigate this relaxation of regularity by nonlinear damping, 
but equipped with practically relevant absorbing and Neumann boundary data. This is motivated by many 
applications of high intensity focused ultrasound where the need for more realistic boundary conditions is 
evident. E.g. in lithotripsy one faces the problem of a physically unbounded domain, as typical in acoustics, 
which should be truncated for numerical computations. Absorbing boundary conditions are then used to 
avoid reflections on the artificial boundary Γ̂ of the computational domain.

Ultrasound excitation, e.g. by piezoelectric transducers, can be modeled by Neumann boundary conditions 
on the rest of the boundary Γ = ∂Ω \ Γ̂.

In our case, the design of the nonlinear absorbing and inhomogeneous Neumann boundary conditions is 
influenced by the presence of the nonlinear strong damping in the equations. We will study initial boundary 
value problems of the following type:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2ku)utt − c2Δu− b div
(
((1 − δ) + δ|∇ut|q−1)∇ut

)
+ βut = 2k(ut)2 in Ω × (0, T ],

c2 ∂u
∂n + b((1 − δ) + δ|∇ut|q−1)∂ut

∂n = g on Γ × (0, T ],
αut + c2 ∂u

∂n + b((1 − δ) + δ|∇ut|q−1)∂ut

∂n = 0 on Γ̂ × (0, T ],
(u, ut) = (u0, u1) on Ω × {t = 0},

(1.6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 2ku)utt − c2Δu− b div
(
((1 − δ) + δ|∇ut|q−1)∇ut

)
+ γ|ut|q−1ut = 2k(ut)2 in Ω × (0, T ],

c2 ∂u
∂n + b((1 − δ) + δ|∇ut|q−1)∂ut

∂n = g on Γ × (0, T ],
αut + c2 ∂u

∂n + b((1 − δ) + δ|∇ut|q−1)∂ut

∂n = 0 on Γ̂ × (0, T ],
(u, ut) = (u0, u1) on Ω × {t = 0},

(1.7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − 2ku)utt − c2div(∇u + ε|∇u|q−1∇u) − bΔut + βut = 2k(ut)2 in Ω × (0, T ],
c2 ∂u

∂n + c2ε|∇u|q−1 ∂u
∂n + b∂ut

∂n = g on Γ × (0, T ],
αut + c2 ∂u

∂n + c2ε|∇u|q−1 ∂u
∂n + b∂ut

∂n = 0 on Γ̂ × (0, T ],
(u, ut) = (u0, u1) on Ω × {t = 0},

(1.8)
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