Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Two results on composition operators on the Dirichlet space

Daniel Li $^{\mathrm{a},*},$ Hervé Queffélec $^{\mathrm{b}},$ Luis Rodríguez-Piazza $^{\mathrm{c},1}$

 ^a Univ Lille Nord de France, U-Artois, Laboratoire de Mathématiques de Lens EA 2462 & Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18, F-62300 Lens, France
 ^b Univ Lille Nord de France, USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS

^c Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS,
 ^c Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS,
 ^c Apartado de Correos 1160, 41080 Sevilla, Spain

ABSTRACT

in \mathcal{D} .

A R T I C L E I N F O

Article history: Received 17 October 2014 Available online 2 February 2015 Submitted by T. Ransford

Keywords: Approximation numbers Carleson embedding Composition operator Cusp map Dirichlet space

1. Introduction

Recall that if φ is an analytic self-map of \mathbb{D} , a so-called *Schur function*, the composition operator C_{φ} associated to φ is formally defined by

$$C_{\varphi}(f) = f \circ \varphi.$$

The Littlewood subordination principle [3, p. 30] tells us that C_{φ} maps the Hardy space H^2 to itself for every Schur function φ . Also recall that if H is a Hilbert space and $T: H \to H$ a bounded linear operator, the *n*-th approximation number $a_n(T)$ of T is defined as

$$a_n(T) = \inf\{\|T - R\|; \text{ rank } R < n\}, \quad n = 1, 2, \dots$$
(1.1)

We show that the decay of approximation numbers of compact composition

operators on the Dirichlet space \mathcal{D} can be as slow as we wish. We also prove the

optimality of a result of O. El-Fallah, K. Kellay, M. Shabankhah and H. Youssfi on

boundedness on \mathcal{D} of self-maps of the disk all of whose powers are norm-bounded

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: daniel.li@euler.univ-artois.fr (D. Li), Herve.Queffelec@univ-lille1.fr (H. Queffélec), piazza@us.es

⁽L. Rodríguez-Piazza).

¹ Supported by a Spanish research project MTM 2012-05622.

In [9], working on that Hardy space H^2 (and also on some weighted Bergman spaces), we have undertaken the study of approximation numbers $a_n(C_{\varphi})$ of composition operators C_{φ} , and proved among other facts the following:

Theorem 1.1. Let $(\varepsilon_n)_{n\geq 1}$ be a non-increasing sequence of positive numbers tending to 0. Then, there exists a compact composition operator C_{φ} on H^2 such that

$$\liminf_{n \to \infty} \frac{a_n(C_{\varphi})}{\varepsilon_n} > 0.$$

As a consequence, there are composition operators on H^2 which are compact but in no Schatten class.

The last item had been previously proved by Carroll and Cowen [2], the above statement with approximation numbers being more precise.

For the Dirichlet space, the situation is more delicate because not every analytic self-map of \mathbb{D} generates a bounded composition operator on \mathcal{D} . When this is the case, we will say that φ is a *symbol* (understanding "of \mathcal{D} "). Note that every symbol is necessarily in \mathcal{D} .

In [8], we have performed a similar study on that Dirichlet space \mathcal{D} , and established several results on approximation numbers in that new setting, in particular the existence of symbols φ for which C_{φ} is compact without being in any Schatten class S_p . But we have not been able in [8] to prove a full analogue of Theorem 1.1. Using a new approach, essentially based on Carleson embeddings and the Schur test, we are now able to prove that analogue.

Theorem 1.2. For every sequence $(\varepsilon_n)_{n\geq 1}$ of positive numbers tending to 0, there exists a compact composition operator C_{φ} on the Dirichlet space \mathcal{D} such that

$$\liminf_{n \to \infty} \frac{a_n(C_{\varphi})}{\varepsilon_n} > 0$$

Turning now to the question of necessary or sufficient conditions for a Schur function φ to be a symbol, we can observe that, since $(z^n/\sqrt{n})_{n\geq 1}$ is an orthonormal sequence in \mathcal{D} and since formally $C_{\varphi}(z^n) = \varphi^n$, a necessary condition is as follows:

$$\varphi \text{ is a symbol} \implies \|\varphi^n\|_{\mathcal{D}} = O(\sqrt{n}).$$
 (1.2)

It is worth noting that, for any Schur function, one has:

$$\varphi \in \mathcal{D} \implies \|\varphi^n\|_{\mathcal{D}} = O(n)$$

(of course, this is an equivalence). Indeed, anticipating on the next section, we have for any integer $n \ge 1$:

$$\begin{split} \left\|\varphi^{n}\right\|_{\mathcal{D}}^{2} &= \left|\varphi(0)\right|^{2n} + \int_{\mathbb{D}} n^{2} \left|\varphi(z)\right|^{2(n-1)} \left|\varphi'(z)\right|^{2} dA(z) \\ &\leq \left|\varphi(0)\right|^{2} + \int_{\mathbb{D}} n^{2} \left|\varphi'(z)\right|^{2} dA(z) \leq n^{2} \left\|\varphi\right\|_{\mathcal{D}}^{2}, \end{split}$$

giving the result.

Now, the following sufficient condition was given in [4]:

$$\|\varphi^n\|_{\mathcal{D}} = O(1) \implies \varphi \text{ is a symbol.}$$
 (1.3)

Download English Version:

https://daneshyari.com/en/article/4615394

Download Persian Version:

https://daneshyari.com/article/4615394

Daneshyari.com