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1. Notation

Let p denote the Lebesgue measure. Let £ C C be measurable. For f(z), w(z) measurable on E, with
w(x) >0 for z € E, for 0 < ¢ < 0o, we denote

s = ( | (W(w)lf(x)l)qdwf

E

and for ¢ = oo, we denote

1fllzee ) = esssgpw(fv)lf(x)h

x€

For 1 < ¢ < o0, these define norms. For 0 < ¢ < 1, these define seminorms; by abuse of language, we refer
to them as norms. The weighted L4-spaces are defined for 0 < ¢ < oo:

LL(E) = {f : [fllzacm) < oo}
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For E C (0,00), we are particularly interested in

and with this weight, we denote for 0 < p < 00, 0 < ¢ < oc:

1llzs, = (E/( 24 f(a) > (/ qu)%

E

while for 0 < p <00, q=00, We denote
1
1fllzes, o E) = ess sup 7 £ ().
For p = g = 00, we let

Ifllzes. @

denote the usual L°°-norm of f on E. The L:’J(p g)-Sbaces are defined for 0 < p < 00, 0 < ¢ < o0, or
P=4g=

L8 0 (B) = {£ £ 11 llus

<oo}.

w(p, q)

For a function f measurable and finite a.e. on E C C, let f* denote the nonincreasing rearrangement of
|f]; that is, f* is nonincreasing on (0, u(E)), and for all a > 0,

p{f* > a} = p{lfl > a}.

Denote for 0 < p < 00, 0 < ¢ < 00:

Iz pa)E) = (

o

and for 0 < p < 00, ¢ = 00

I fllL(p,c) () = esssup x# f*(x).

0<z<p(E)
In fact, it can be shown that
1 oy
IflLpooyey = sup v f*(x).
0<z<pu(E)
For p = ¢ = oo, we let
£l (00,00) (E)

denote the usual L*-norm of f on E. For 0 < p < o0, 0 < ¢ < oo, these define seminorms; by abuse of
language, we refer to them as norms. The Lorentz spaces L(p, q) are defined for 0 < p < 00, 0 < ¢ < o0, or
P=q=0

L(p,q)(E) = {f : If | L(p.q)(r) < >0}
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