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We develop results on general monotone functions, and use these to extend classical 
results in harmonic analysis of Hardy and Littlewood. This also generalizes work of 
Askey and Boas, Sagher, and Liflyand and Tikhonov.
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1. Notation

Let μ denote the Lebesgue measure. Let E ⊂ C be measurable. For f(x), ω(x) measurable on E, with 
ω(x) > 0 for x ∈ E, for 0 < q < ∞, we denote

‖f‖Lq
ω(E) =

(∫
E

(
ω(x)

∣∣f(x)
∣∣)q dx) 1

q

and for q = ∞, we denote

‖f‖L∞
ω (E) = ess sup

x∈E
ω(x)

∣∣f(x)
∣∣.

For 1 ≤ q ≤ ∞, these define norms. For 0 < q < 1, these define seminorms; by abuse of language, we refer 
to them as norms. The weighted Lq-spaces are defined for 0 < q ≤ ∞:

Lq
ω(E) =

{
f : ‖f‖Lq

ω(E) < ∞
}
.
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For E ⊂ (0, ∞), we are particularly interested in

ω(x) = x
1
p− 1

q

and with this weight, we denote for 0 < p < ∞, 0 < q < ∞:

‖f‖Lq
ω(p,q)(E) =

(∫
E

(
x

1
p− 1

q

∣∣f(x)
∣∣)q dx) 1

q

=
(∫

E

(
x

1
p

∣∣f(x)
∣∣)q dx

x

) 1
q

while for 0 < p < ∞, q = ∞, we denote

‖f‖L∞
ω(p,∞)(E) = ess sup

x∈E
x

1
p

∣∣f(x)
∣∣.

For p = q = ∞, we let

‖f‖L∞
ω(∞,∞)(E)

denote the usual L∞-norm of f on E. The Lq
ω(p,q)-spaces are defined for 0 < p < ∞, 0 < q ≤ ∞, or 

p = q = ∞:

Lq
ω(p,q)(E) =

{
f : ‖f‖Lq

ω(p,q)(E) < ∞
}
.

For a function f measurable and finite a.e. on E ⊂ C, let f∗ denote the nonincreasing rearrangement of 
|f |; that is, f∗ is nonincreasing on (0, μ(E)), and for all α > 0,

μ
{
f∗ > α

}
= μ

{
|f | > α

}
.

Denote for 0 < p < ∞, 0 < q < ∞:

‖f‖L(p,q)(E) =
( μ(E)∫

0

(
x

1
p− 1

q f∗(x)
)q

dx

) 1
q

=
( μ(E)∫

0

(
x

1
p f∗(x)

)q dx
x

) 1
q

and for 0 < p < ∞, q = ∞:

‖f‖L(p,∞)(E) = ess sup
0<x<μ(E)

x
1
p f∗(x).

In fact, it can be shown that

‖f‖L(p,∞)(E) = sup
0<x<μ(E)

x
1
p f∗(x).

For p = q = ∞, we let

‖f‖L(∞,∞)(E)

denote the usual L∞-norm of f on E. For 0 < p < ∞, 0 < q ≤ ∞, these define seminorms; by abuse of 
language, we refer to them as norms. The Lorentz spaces L(p, q) are defined for 0 < p < ∞, 0 < q ≤ ∞, or 
p = q = ∞:

L(p, q)(E) =
{
f : ‖f‖L(p,q)(E) < ∞

}
.
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