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where the potential k(z) allows sign changing. We obtain the existence and
multiplicity of solutions for the system, which can be regarded as complementary
work of Huang et al. (2013) [12].
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1. Introduction
The system

—Au+u+(z)pu = g(z,u) xeR3 (1.1)

—A¢ = I(z)u? reR3 '
arises in quantum mechanics models and semiconductor theory. Many researchers have considered the system
mainly in the autonomous case: see e.g. [3,13]. By Pohozaev equality or Nehari manifold method, they
proved existence and nonexistence of solutions of the system (see [10]). By combining Nehari manifold and
Pohozaev equality, Ruiz [13] obtained a certain manifold and considered the minimizing energy functional
J on it. He proved some existence and nonexistence results. However, the method is hardly applied to
the non-autonomous case. In the present paper, we consider the non-autonomous case that g(z,u) is a
combination of a 4-linear term and a linear term. More precisely, we study the following system with the

form
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~A¢ = I(z)u? z€R? (SP)

{ —Au+u+U(x)pu = k(z)|ulP%u + M(z)u z € R?
where p = 4 and A > 0. As far as we know, no one considered this case before. For non-autonomous case,
many mathematicians mainly considered the case 4 < p < 6 or p = 2 see [8,5,14]. Specifically, Cerami and
Vaira [5] studied the case g(z,u) = k(z)|u|P~2u where 4 < p < 6. Sun et al. [14] considered the case p = 2,
i.e. they considered the case of asymptotically linear at infinity. More recently, Huang et al. [12] considered
the case g(z,u) = k(x)|u[P~2u+ Ah(x)u where 4 < p < 6. They proved existence and multiplicity results by
some ideas developed in [9]. To do this they used the mountain pass theorem of [2]. Motivated by [12,14,5],
we are interested in the case that p = 4 and k(x) is sign changing on R3. It is well known that the system (SP)
can be easily transformed to a nonlinear Schrédinger equation with a non-local term [y, 1(z)¢y (x)u? (see
later). Since the non-local term [, [(x)dy (x)u? is 4-order and k(x) is sign changing on R?, the geometrical
structure of mountain pass may fail if p = 4. Moreover, under our hypotheses, whether the (PS) property
holds or not remains incognito. Therefore, we cannot simply apply the dual method from [2]. It means that
the methods used in above papers may not work anymore. In order to state our main results, we assume
the following hypotheses (H):

(Hy) h e L3(R3), h(x) > 0 for any = € R? and h # 0;
(Hg,) k(z) € C(R3) and k(x) changes sign in R?;
(sz) hn’l|x|ﬁoo ]{)( ) = koo < 0;

(Hy) I(z) >0, l(z) € L*®(R3) or I(x) € L*(R3).

Under hypothesis (Hy), there exists a sequence of eigenvalues A, of
—Au+u=Ah(z)u in H'(R?)

with 0 < Ay < Ao < -+ and each eigenvalue being of finite multiplicity. The associated normalized eigen-
functions are denoted by e, e, - - - with ||e;|| = 1. Moreover, e; > 0 in R3.
We are now ready to state our results:

Theorem 1.1. Assume hypotheses (H) hold. Then for 0 < X\ < A1, problem (SP) has at least one solution
in HY(R3) x D2(R?).

Theorem 1.2. Assume hypotheses (H) hold and suppose [ps k(z)er® — l(x)de,e1? < 0. Then there exists
0 > 0 such that problem (SP) has at least two solutions whenever \y < A < A1 + 0.

Remark 1. In [12], the authors proved similar results for 4 < p < 6, but they did not need the condition
Jgs k(z)er* — I(x)¢e,e1? < 0. However, they need additional conditions:

H;,) I(x) € L*(R3),l(z) > 0 for any = € R and [ # 0.
(Hy,) () y
(Hy,) I(z) =0 a.e. in 2° = {z € R?: k() = 0} and 2y coincides with the closure of its interior.

Hypothesis (H;,) insures that the functional u ng 1) ¢ (x)u?dr is weakly continuous. It plays an
importance role in the proof of PS property.

Remark 2. To the best of our knowledge, a similar condition like fRs x)e1%dz < 0 is needed for the semi-
linear elliptic equations with indefinite nonlinearity, (see [1,5,4] and so on). Obviously, if fR3 r)etdr < 0,
our hypotheses hold.
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