Necessary condition for compactness of a difference of composition operators on the Dirichlet space

Małgorzata Michalska ${ }^{a}$, Andrzej M. Michalski ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Institute of Mathematics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
b Department of Complex Analysis, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-950 Lublin, Poland

A R T I C L E I N F O

Article history:

Received 24 September 2014
Available online 4 February 2015
Submitted by T. Ransford

Keywords:

Composition operator
Dirichlet space
Compact operator
Commutator

Abstract

Let φ be a self-map of the unit disk and let C_{φ} denote the composition operator acting on the standard Dirichlet space \mathcal{D}. A necessary condition for compactness of a difference of two bounded composition operators acting on \mathcal{D} is given. As an application, a characterization of disk automorphisms φ and ψ, for which the commutator $\left[C_{\psi}^{*}, C_{\varphi}\right]$ is compact, is given.

© 2015 Published by Elsevier Inc.

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ denote the open unit disk in the complex plane \mathbb{C} and let $\mathbb{T}=\{z:|z|=1\}$ denote the unit circle in \mathbb{C}. The Dirichlet space \mathcal{D} is the space of all analytic functions f in \mathbb{D}, such that

$$
\|f\|_{\mathcal{D}}^{2}:=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

where $d A(z)=\pi^{-1} d x d y$ is the normalized two dimensional Lebesgue measure on \mathbb{D}. The Dirichlet space is a Hilbert space with inner product

$$
\langle f, g\rangle_{\mathcal{D}}:=f(0) \overline{g(0)}+\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)} d A(z)
$$

[^0]The Dirichlet space has the reproducing kernel property and the kernel function is defined as

$$
\begin{equation*}
K_{w}(z):=1+\log \frac{1}{1-\bar{w} z} \tag{1.1}
\end{equation*}
$$

where the branch of the logarithm is chosen such that

$$
\log \frac{1}{1-\bar{w} z}=\sum_{n=1}^{\infty} \frac{(\bar{w} z)^{n}}{n}
$$

By a self-map of \mathbb{D} we mean an analytic function φ such that $\varphi(\mathbb{D}) \subset \mathbb{D}$. We will also assume that a self-map φ is not a constant function. For a self-map of the unit disk φ, the composition operator C_{φ} on the Dirichlet space \mathcal{D} is defined by $C_{\varphi} f:=f \circ \varphi$. The composition operator C_{φ} on Dirichlet space is not necessarily bounded for an arbitrary self-map of the unit disk. However, C_{φ} is bounded on \mathcal{D} if, for example, φ is a finitely valent function (see, e.g., [9,13]). More is known about the composition operator C_{φ} when the symbol φ is a linear-fractional self-map of the unit disk of the form

$$
\varphi(z):=\frac{a z+b}{c z+d}
$$

where $a d-b c \neq 0$. In that case C_{φ} is compact on \mathcal{D} if and only if $\|\varphi\|_{\infty}<1$ (see, e.g., $[3,11,13]$).
For an arbitrary self-map of the unit disk φ, if the operator C_{φ} is bounded, then the adjoint operator C_{φ}^{*} satisfies

$$
C_{\varphi}^{*} f(w)=\left\langle f, K_{w} \circ \varphi\right\rangle_{\mathcal{D}},
$$

which yields a useful equality

$$
\begin{equation*}
C_{\varphi}^{*} K_{w}=K_{\varphi(w)} . \tag{1.2}
\end{equation*}
$$

For φ a linear-fractional self-map of \mathbb{D}, Gallardo-Gutiérrez and Montes-Rodríguez in [4] (see also [8]) proved that the adjoint of the composition operator is given by formula

$$
\begin{equation*}
C_{\varphi}^{*} f=f(0) K_{\varphi(0)}-\left(C_{\varphi^{*}} f\right)(0)+C_{\varphi^{*}} f, \tag{1.3}
\end{equation*}
$$

where

$$
\varphi^{*}(z):=\frac{1}{\overline{\varphi^{-1}\left(\frac{1}{\bar{z}}\right)}}, \quad z \in \mathbb{D},
$$

is the Krein adjoint of φ. It is worth to note that φ^{*} is a linear-fractional self-map of the unit disk, in fact

$$
\varphi^{*}(z)=\frac{\bar{a} z-\bar{c}}{-\bar{b} z+\bar{d}} .
$$

It is easy to check that w is a fixed point of φ if and only if $1 / \bar{w}$ is a fixed point of φ^{*}. In particular, if φ has a fixed point on \mathbb{T}, then it is a fixed point of both φ and φ^{*}.

Let φ be a disk automorphism, which is of the form

$$
\begin{equation*}
\varphi(z)=e^{i \theta} \frac{a-z}{1-\bar{a} z}, \quad z \in \mathbb{D}, \tag{1.4}
\end{equation*}
$$

where $a \in \mathbb{D}$ and $\theta \in(-\pi, \pi]$. We will say that

https://daneshyari.com/en/article/4615404

Download Persian Version:

https://daneshyari.com/article/4615404

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: malgorzata.michalska@poczta.umcs.lublin.pl (M. Michalska), amichal@kul.lublin.pl (A.M. Michalski).

