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This note deals with average cost Markov decision processes with Borel state and 
control spaces, possibly unbounded costs and non-compact action subsets under 
the assumption of weak continuity of the transition law. It provides an elementary 
proof of the existence of average cost optimal stationary policies using the vanishing 
discount factor approach.
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1. Introduction

The vanishing discount factor approach is a general procedure to address average cost (AC) optimal 
control problems by means of discounted problems when the discount factor tends to one. Its inception 
goes back to the early years of the discrete-time Markov decision processes (MDPs) theory, but it has 
been applied to a number of Markovian systems. For a very detailed account up to the early nineties 
see the survey paper [1], and for more recent results see [4,7,10,13,15,18,20–22]. Since then, besides the 
discrete-time MDPs, the vanishing discount factor approach has been successfully applied to discrete-time 
Markov games [19], semi-Markov decision processes [26], risk-sensitive MDPs [2,3,17], unconstrained and 
constrained continuous-time MDPs [11,12,23], continuous-time Markov control processes [14] and piece-wise 
deterministic MDPs [5]. The present note focusses on discrete-time MDPs with Borel spaces and weakly 
continuous transition law, in which the cost function may be unbounded and the action subsets may be 
noncompact sets as in the paper by Feinberg et al. [7].

Loosely speaking, the vanishing discount factor approach requires to work on two kinds of assumptions. 
The first one is “continuity/compactness” conditions, which are aimed to ensure either the measurability or 
lower semicontinuity of the optimal value functions as well as the existence of measurable minimizers. This 
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is done, of course, by means of measurable selection theorems or Berge’s minimum theorems. The second 
kind of assumptions imposes some condition on the “relative discounted value functions” and essentially 
asks that such functions do not grow without bound as the discount factor tends to one (see, for instance, 
[4,10,20,21]). Then, the main idea in the vanishing discount factor approach consists in getting a solution to 
the average cost optimality inequality as a limit of the relative discounted value functions when the discount 
factor tends to one. This step is accomplished by means of suitable versions of Fatous’ lemma for varying 
measures (see [9,16,25]).

The recent paper by Feinberg et al. [7] shows the existence of AC optimal stationary policies using 
the vanishing discount factor approach. They consider discrete-time MDPs with Borel spaces and weakly 
continuous transition law, in which the cost function may be unbounded and the admissible action subsets 
may be noncompact sets. More specifically, they assume the one-step cost function satisfies a kind of local 
inf-compactness property they call K-inf-compactness (see, [6,8]). This kind of compactness condition seems 
to be the weakest one among all the conditions previously used in the MDP literature. For the second kind 
of assumptions they use a slightly weaker version of the condition introduced by Schäl [24].

The present note gives a simplified and somewhat elementary proof of the existence of average cost 
stationary optimal policies under the same assumptions made in the paper [7]. This is done using the 
concept of lower semicontinuous envelope of functions and an elementary result on the interchange of limits 
and minima in lieu of a Fatou’s lemma for varying measures.

The remainder of the note is organized as follows. Section 2 introduces the Markov decision model and the 
performance criteria, namely, the average and the discounted cost criteria. The “continuity/compactness” 
assumption mentioned above is stated in Assumption 3.1, in Section 3; this section also collects several 
important consequences of Assumption 3.1 on the lower semicontinuity of minima and the existence of 
measurable minimizer—see Theorem 3.2—and on the discounted optimal control problem—see Theorem 3.3. 
All these results are borrowed from [7]. The main result of the present note, Theorem 4.5, is stated and 
proved in Section 4.

2. Performance criteria

The following notation is used throughout the note. Let R and R denote the real numbers and extended 
real numbers sets, respectively. Moreover, N0 and N stand for the nonnegative and positive integers sets, 
respectively. For a topological space (S, τ), the Borel σ-algebra generated by the topology τ is denoted 
by B(S) and “measurability” will always mean measurability with respect to B(S). A Borel space Y is a 
measurable subset of a complete separable metric space endowed with the inherited metric.

Consider the standard Markov decision model (X, A, {A(x) : x ∈ X}, Q,C), where the state space X
and the control space A are nonempty Borel spaces. The collection {A(x) : x ∈ X} is a family of nonempty 
measurable subsets of A, where A(x) denotes the admissible action set for state x ∈ X. It is assumed that 
the admissible state–action pairs set K = {(x, a) : x ∈ X, a ∈ A(x)} belongs to B(X× A). The transition 
law Q(·|·, ·) is a stochastic kernel on X given K, that is, Q(·|x, a) is a probability measure on X for each 
(x, a) ∈ K, and Q(B|·, ·) is a measurable function on K for each B ∈ B(X). Finally, the one-step cost C(·, ·)
is a measurable function on K.

The Markov decision model is interpreted as a model of a system that evolves as follows: at each time 
n ∈ N0 the state of the system is observed, say xn = x ∈ X, and the controller chooses an action an = a ∈
A(x). As a result of this decision the controller incurs in cost C(x, a) and the system moves to a new state, 
say xn+1 = y ∈ X, according to the probability measure Q(·|x, a).

Let H0 := X and Hn := (K× X)n for n ∈ N. A control or decision policy π = {πn} is a sequence 
of stochastic rules that choose admissible actions in each decision time; more precisely, each πn(·|·) is a 
stochastic kernel on A given Hn satisfying the constraints
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