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Conditions are given for the existence of a solution of given period to the impulsively 
driven van der Pol equation. Results are obtained for impulses of varying degrees 
of state dependence.
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1. Introduction

For given μ > 0, T > 0 and an almost everywhere T -periodic real function f : R → R Lebesgue integrable 
on [0, T ], we consider the impulsively driven Liénard equation

x′′ − μ(x− x3

3 )′ + x = f +
m∑
i=1

ai[x]δt
i
[x] (1)

where the impulses δti[x] have state dependent amplitude ai[x] ∈ R at state dependent instants ti[x] + kT

(k ∈ Z, ti ∈ [0, T ), i ∈ {1, . . . , m}). This equation, in the absence of impulsive forcing, was introduced 
by van der Pol [20–22] to model a vacuum tube triode circuit. Cartwright and Littlewood studied the non 
impulsive forced equation in [5,6,15,16], as did also more recently Guckenheimer, Hoffman and Weckesser 
in [10], Kalas and Kadeřábek in [11] and Lin in [14] (for example). In this paper we approach the problem 
of the existence of T -periodic solutions of (1). Such results already exist in the literature for some first and 
second order nonlinear differential equations. (See [1–3,7,8,17].) In the case of (1), the expression (x −x3/3)′
fails to satisfy a simple Lipschitz condition, which adds to the difficulty in obtaining similar results.
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We write L1(T ) to denote the Banach space of almost everywhere T -periodic functions x : R → R with 
norm

‖x‖1 = 1
T

T∫
0

|x(t)| dt

and NBV (T ) for the family of all x ∈ L1(T ) which are of bounded variation over [0, T ] and normalized in 
the sense that

x(t) = 1
2[x(t−) + x(t+)]

for all t ∈ R. We shall obtain conditions that guarantee the existence of a solution x ∈ NBV (T ) of (1) such 
that x′ ∈ NBV (T ) and so such that x′′ ∈ L1(T ) [19, p. 157]. First we shall consider the state independent 
case (where ai and ti are constants for all i). This will be followed by the mean-state dependent case. The 
general state dependent case will be considered last. We found that this order of presentation made the 
paper easier to follow, without affecting its length.

2. Preliminaries

Any T -periodic generalized function x(t) can be identified with a Fourier series by the formula

x(t) =
∑
n∈Z

x̂(n)einωt (ω = 2π/T )

for x̂(n) ∈ C. Its generalized derivative, denoted x′(t), is also identified with a Fourier series by way of the 
formula

x′(t) =
∑
n∈Z

inωx̂(n)einωt.

The mean x̄ of x is given by

x̄ = x̂(0)

and we define x̃ by

x̃ = x− x̄.

In particular (see, for example, [23, p. 333])

δt′(t) =
∑
n∈Z

einω(t−t′),

δt′ = 1

and

δ̃t′(t) =
∑

n∈Z\{0}
einω(t−t′)
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