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This work considers an inverse boundary value problem for a 3D nonlinear elliptic 
partial differential equation in a bounded domain. In general, the problem is severely 
ill-posed. The formal solution can be written as a hyperbolic cosine function in terms 
of the 2D elliptic operator via its eigenfunction expansion, and it is shown that the 
solution is stabilized or regularized if the large eigenvalues are cut off. In a theoretical 
framework, a truncation approach is developed to approximate the solution of the 
ill-posed problem in a regularization manner. Under some assumptions on regularity 
of the exact solution, we obtain several explicit error estimates including an error 
estimate of Hölder type. A local Lipschitz case of source term for this nonlinear 
problem is obtained. For numerical illustration, two examples on the elliptic sine-
Gordon and elliptic Allen–Cahn equations are constructed to demonstrate the 
feasibility and efficiency of the proposed methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the problem of reconstructing the temperature of a body from interior mea-
surements. In fact, in many engineering contexts (see, e.g., [4]), we cannot attach a temperature sensor 
at the surface of a body (e.g., the skin of a missile). Hence, to get the temperature distribution on the 
surface, we have to use the temperature measured inside the body. Let L be a positive real number and 
Ω = (0, π) × (0, π). We are interested in the following inverse boundary value problem: Find u(x, y, 0) for 
(x, y) ∈ Ω where u(x, y, z) satisfies the following nonlinear elliptic equation:
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Δu = F
(
x, y, z, u(x, y, z)

)
, (x, y, z) ∈ Ω × (0,+∞), (1.1)

subject to the conditions

⎧⎪⎨
⎪⎩

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω × (0,+∞),
u(x, y, L) = ϕ(x, y), (x, y) ∈ Ω,

uz(x, y, L) = 0, (x, y) ∈ Ω.

(1.2)

Here Δu = ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2, the function ϕ ∈ L2(Ω) is known, and F is called the source 
function to be defined later. Having found u(x, y, 0) a forward problem can be solved to find u(x, y, z) for 
all (x, y, z) ∈ Ω × (0, L).

It is widely recognized nowadays that Cauchy problems for the Poisson equation, and more generally 
for elliptic equations, have a central position in all inverse boundary value problems which are encountered 
in many practical applications such as electrocardiography [18], astrophysics [6] and plasma physics [3,16]. 
These problems are also closely related to inverse source problems arising from, e.g., electroencephalography 
and magnetoencephalography [19]. The continued interest in this kind of problems is evidenced by the 
number of publications on this topic. We refer to the monograph [18] for further reading on Cauchy problems 
for elliptic equations.

It is well-known that inverse boundary value problems are exponentially ill-posed in the sense of 
Hadamard. Existence of solutions and their stability with respect to given data do not hold even if the 
data are very smooth. In fact, the problems are extremely sensitive to measurement errors; hence, even in 
the case of existence, a solution does not depend continuously on the given data. This, of course, implies 
that a properly designed numerical treatment is required.

Inverse boundary problems for linear elliptic equations have been studied extensively, see, e.g., [1,3]. 
Indeed, in the case F = 0 in (1.1) with the following conditions

⎧⎪⎪⎨
⎪⎪⎩

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω × (0,+∞),
u(x, y, L) = ϕ(x, y), (x, y) ∈ Ω,

lim
z→∞

uz(x, y, L) = 0, (x, y) ∈ Ω,

(1.3)

the problem is studied in [7,19,24]. In these studies, the algebraic invertibility of the inverse problem is 
established. However, regularization is not investigated. In [17], the authors apply the nonlocal boundary 
value method to solve an abstract Cauchy problem for the homogeneous elliptic equation. Eldén et al.
develop useful numerical methods to solve the homogeneous problem; see for example [10–13]. Level set 
type methods are also proposed [23] for Cauchy problems for linear elliptic equations.

Although there are many works on Cauchy problems for linear elliptic equations, to the best of our 
knowledge the literature on the nonlinear case is very few. In the abstract framework of operators on 
Hilbert spaces, regularization techniques are developed by B. Kaltenbacher and her coauthors in [2,20–22]. 
The present paper serves to develop necessary theoretical bases for a regularization of problem (1.1)–(1.2).

Our approach can be summarized as follows. Let ϕ and ϕε be the exact and measured data at z = L, 
respectively, which satisfy ‖ϕ − ϕε‖L2(Ω) ≤ ε. Assume that problem (1.1)–(1.2) has a unique solution 
u(x, y, z). By using the method of separation of variables, one can show that

u(x, y, z) =
∞∑

m=1

∞∑
n=1

[
cosh

(
(L− z)

√
m2 + n2

)
ϕmn +

L∫
z

sinh((τ − z)
√
m2 + n2)√

m2 + n2
Fmn(u)(τ)dτ

]
φmn(x, y).

(1.4)
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