
The Journal of Systems and Software 115 (2016) 18–30

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Mutation testing cost reduction by clustering overlapped mutants

Yu-Seung Ma a,∗, Sang-Woon Kim b

a Electronics and Telecommunications Research Institute, Daejeon, South Korea
b FormalWorks, Inc., Seoul, South Korea

a r t i c l e i n f o

Article history:

Received 20 October 2014

Revised 24 December 2015

Accepted 6 January 2016

Available online 13 January 2016

Keywords:

Software testing

Mutation testing

a b s t r a c t

Mutation testing is a powerful but computationally expensive testing technique. Several approaches have

been developed to reduce the cost of mutation testing by decreasing the number of mutants to be exe-

cuted; however, most of these approaches are not as effective as mutation testing which uses a full set

of mutants. This paper presents a new approach for executing fewer mutants while retaining nearly the

same degree of effectiveness as is produced by mutation testing using a full set of mutants. Our approach

dynamically clusters expression-level weakly killed mutants that are expected to produce the same re-

sult under a test case; only one mutant from each cluster is fully executed under the test case. We

implemented this approach and demonstrated that our approach efficiently reduced the cost of mutation

testing without loss of effectiveness.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mutation testing (DeMillo et al., 1978) is a testing technique

that measures the quality of test cases and helps in designing new

test cases. Mutation testing involves modifying a program by intro-

ducing simple syntactic changes and creating possible faulty ver-

sions, called mutants. Test cases are executed against both the orig-

inal program and mutants. A mutant is killed by a test case that

causes the mutant program to produce a different output from the

original program’s output. Test cases are considered to be effective

if they kill most mutants.

Although mutation testing is powerful (Mathur and Wong,

1994; Frankl et al., 1997), its high execution cost has always been

a problem to be solved. Several approaches have been proposed to

reduce the cost of mutation testing. Cost reduction approaches are

well reviewed in the survey papers (Jia and Harman, 2011; Usaola

and Mateo, 2010). Among the approaches, reducing the number of

mutants to be executed is the most obvious way to reduce costs.

However, most approaches that run fewer mutants have the draw-

back that they are not as effective as mutation testing that uses a

full set of mutants.

To address this issue, we propose a new approach that exe-

cutes fewer mutants but is nearly as effective as approaches that

use a full set of mutants. Our approach dynamically clusters mu-

tants that are expected to produce the same results against a test

∗ Corresponding author. Tel.: +82 42 860 6551.

E-mail address: ysma@etri.re.kr (Y.-S. Ma).

case. For that, the execution of mutants whose mutated code is

in a common position is halted immediately after executing the

mutated code. The intermediate results are then compared, and

mutants with identical intermediate results are clustered. A sin-

gle mutant from each cluster is then fully executed using a strong

mutation method against the test case. If the fully executed mutant

is killed (or live), all remaining mutants in the cluster are consid-

ered to be killed (or live). The advantage of our approach is that it

reduces the cost of mutation testing by restricting the number of

mutants that are fully executed. In addition, it can lead to a fur-

ther cost reduction by easily combining existing cost reduction ap-

proaches.

Our approach was implemented by extending a Java mutation

system and experiments were conducted to determine the effi-

ciency.

This paper is organized as follows. Sections 2 describes related

work and Section 3 provides some background information in sup-

port of the new approach. Section 4, the main part of the paper,

describes the cost reduction method for mutation testing. Section 5

presents experimental results and a cost comparison. Section 6

presents conclusions and discusses future work.

2. Related work

The number of mutants significantly affects the execution cost

of mutation testing because each mutant is executed repeatedly

against at least one (potentially many) test case. Many researches

have attempted to reduce the number of mutants without signifi-

cant loss of test effectiveness.

http://dx.doi.org/10.1016/j.jss.2016.01.007

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.01.007&domain=pdf
mailto:ysma@etri.re.kr
http://dx.doi.org/10.1016/j.jss.2016.01.007


Y.-S. Ma, S.-W. Kim / The Journal of Systems and Software 115 (2016) 18–30 19

A mutation survey paper (Jia and Harman, 2011) classified the

approaches that use fewer mutants into four categories: (1) mutant

sampling, (2) selective mutation, (3) higher order mutation, and (4)

mutant clustering.

Mutant sampling (Acree, 1980; Budd, 1980) uses a small per-

centage, say x%, of randomly selected mutants and ignores the re-

maining mutants. An empirical study conducted by Wong (1993)

showed that test sets adequate for 10% of randomly chosen mu-

tants were only 16% less effective than mutation analysis that used

a full set of mutants.

Selective mutation (Wong et al., 1994; Offutt et al., 1996) uses

selective mutation operators, comprising portions of the entire mu-

tation operators that are nearly as effective as non-selective mu-

tation. Several studies (Wong et al., 1994; Offutt et al., 1996) have

been conducted to identify efficient selective mutation operators.

One of the widely used selective mutation operator set consists of

five mutation operators (Offutt et al., 1996): ABS, UOI, LCR, AOR

and ROR. Experimental trials showed that these five operators pro-

vide nearly the same coverage as non-selective mutation operators,

with cost reduction of at least four times with small programs.

Higher order mutation (Jia and Harman, 2009; Polo et al., 2008;

Mateo et al., 2013) uses higher-order mutants instead of first order

mutants. The approach was originally proposed to identify higher-

order mutants that denote subtle faults, and it also suggested sub-

suming higher order mutant which may be preferable to replace

first order mutant.

Mutant clustering (Hussain, 2008; Ji et al., 2009) is an approach

that selects a subset of mutants using a clustering algorithm. Each

mutant in a cluster is likely to be killed by the same set of test

cases; thus, one or a part of mutants from each cluster is used

for mutation testing. The possibility of mutant clustering was first

shown in the master’s thesis of Hussain (2008), which clusters

mutants by analyzing similarities among mutants. However, the

method determines the similarity by executing all mutants repeat-

edly against all test cases. Ji et al. (2009) uses a domain analysis

to determine similarity among mutants. The method uses symbolic

execution to analyze the domain of variables; thus, its effectiveness

is subordinate to the symbolic execution’s ability.

This section introduces two additional categories for reducing

the number of mutants: ‘mutation subsumption’ and ‘dynamic mu-

tant filtering’ approaches.

Mutation subsumption (Kaminski et al., 2013; Just et al., 2012;

Ammann et al., 2014; Kurtz et al., 2014) approach aims at not

creating redundant mutants that are subsumed by other mu-

tants. Kaminski et al. (2013) proposed that tests detecting three

of the ROR (Relational Operator Replacement) mutants subsume

(are guaranteed to detect) all seven ROR mutants; thus, the three

ROR mutants were non-redundant. Just et al. (2012) investigated

the subsumption relations among COR (Conditional Operator Re-

placement) mutants and suggested that only three COR mutants

were non-redundant. Ammann et al. (2014) proposed a dynamic

subsumption approach. They proposed a model for minimizing

mutants with respect to a test set, thus, a minimal set of non-

redundant mutants can be changed according to the used test set.

Kurtz et al. (2014) define true subsumption, dynamic subsumption,

and static subsumption to model the redundancy between mutants

and develop a graph model to display the subsumption relation-

ship.

Dynamic mutant filtering (Schuler and Zeller, 2009; Weiss and

Fleyshgakker, 1993; Kim et al., 2013) is an approach which dy-

namically filters out mutants to be expected to be strongly live

for each test case and improves the speed by excluding their

execution. Schuler and Zeller (2009) executed only the reach-

able mutants with a code coverage analysis. Weiss and Fleysh-

gakker (1993) proposed an approach in which weak and strong

mutations were combined for an interpretive mutation system. It

filtered out weakly killed mutants. Kim et al.’s study (Kim et al.,

2013) extended their approach to a non-interpretive mutation sys-

tem. Experimental results showed that removing the execution of

unreachable and weakly live mutants significantly reduced the cost

of mutation testing.

The approach proposed in this paper takes advantage of both

the dynamic mutant filtering approach and the mutant clustering

approach. For each test case, weakly killed mutants are filtered,

and weakly killed mutants with identical intermediate results are

clustered. A single mutant from each cluster is then fully executed

with the test case. The goal is to reduce the number of mutants

that must be fully executed without reducing the test effectiveness.

3. Definition of conditionally overlapped mutants

We define the mutant M1 is overlapped to the mutant M2, and

vice versa, if the mutants M1 and M2 are functionally identical.

That is, the mutant M1 is an overlapped mutant of the mutant M2,

and vice versa. Although the definition of an overlapped mutant

is similar to that of an equivalent mutant, the concept is slightly

different. An equivalent mutant (Yao et al., 2014) is a mutant that

is functionally identical to the original program, thus it cannot be

killed by any test case. On the other hand, an overlapped mutant

is a mutant that is functionally identical to at least one other mu-

tant and can be killed by some test cases if it is not an equivalent

mutant. If a mutant is killed (or live), all of its overlapped mutants

are killed (or live) in the same manner. Therefore, without execut-

ing all mutants, we can predict their results by running only one

mutant from each set of overlapped mutants.

Consider the statement ‘C = A + B;’ and its mutated versions of

mutants m1 and m2: ‘C = A − B;’ and ‘C = A + (−B);’. In this exam-

ple, the mutants m1 and m2 are overlapped. Executing both mu-

tants would be a duplicated effort. The identification of overlapped

mutants prior to execution would be beneficial; however, the com-

plete detection of overlapped mutants is impossible because it is

essentially the same problem as detecting equivalent mutants. In-

stead, we focus on a specific type of overlapped mutants, the con-

ditionally overlapped mutants, described below.

Conditionally overlapped mutants are defined using a looser def-

inition of the overlapped mutants. The mutant M1 is conditionally

overlapped (c-overlapped) to the mutant M2 for a test case if the

mutants M1 and M2 produce identical results for the test case.

To avoid confusion, we will refer to overlapped mutants as ab-

solutely overlapped (a-overlapped) mutants. A-overlapped mutants

always produce identical results for any test cases; however, c-

overlapped mutants are clustered depending on the test case, thus,

different sets of c-overlapped mutants will be formed if a different

test case is used.

Let us examine the program code in Fig. 1. Applying the ROR

and AOR operators to the program yields 15 different mutated

codes, as listed in Table 1. The ROR mutation operator is applied

to the third line of code and produces seven mutants. The AOR

mutation operator is applied to the fourth and sixth lines of code

and produces eight mutants.

1 int myFunction(int A, int B) {
2 int C;
3 if ( A ! = B )
4 C = A + B;
5 else
6 C = A * B;
7 return C;
8 }

Fig. 1. An example code for conditionally overlapped mutants.



Download English Version:

https://daneshyari.com/en/article/461544

Download Persian Version:

https://daneshyari.com/article/461544

Daneshyari.com

https://daneshyari.com/en/article/461544
https://daneshyari.com/article/461544
https://daneshyari.com

