A mixed boundary value problem for Chaplygin's hodograph equation

Li Liu ${ }^{\text {a }}$, Meng Xu ${ }^{\text {b,* }}$, Hairong Yuan ${ }^{\text {c }}$
${ }^{\text {a }}$ Shanghai University of International Business and Economics, Shanghai 201620, China
b Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China
${ }^{\text {c }}$ Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China

A R T I C L E I N F O

Article history:

Received 2 January 2014
Available online 2 October 2014
Submitted by T. Witelski

Keywords:

Existence
Uniqueness
Degenerate elliptic equation
Chaplygin's equation
Perron's method

Abstract

In this paper we will prove existence, uniqueness and regularity of a classical solution to a mixed boundary value problem for Chaplygin's hodograph equation, which is degenerate elliptic on a part of the boundary. This problem is derived from the study of detached bow shock ahead of a straight ramp in uniform supersonic flows in the hodograph plane. The proof depends on Perron's method and some techniques from linear elliptic equations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that for a steady uniform supersonic flow past a straight ramp W^{\prime}, a detached bow shock \mathcal{S} may appear ahead of it if the opening angle of the ramp is larger than a critical value (see Fig. 1 and $c f$. [22, p. 205, Sec. 4.12]). Rigorous analytical study of this problem is extremely difficult even if one assumes that the flow is isentropic and irrotational, i.e., using the following potential flow equations ${ }^{1}$

$$
\begin{align*}
v_{x}-u_{y} & =0 \tag{1.1a}\\
(\rho u)_{x}+(\rho v)_{y} & =0 \tag{1.1b}
\end{align*}
$$

where ρ is the density of mass, and (u, v) is the velocity of gas flow along the (x, y)-coordinates of the Euclidean plane. Up to now no simple special solution is available, since it involves nonlinear elliptic-hyperbolic

[^0]

Fig. 1. The detached bow shock \mathcal{S} ahead of a ramp W^{\prime} with a large angle θ_{W} in uniform horizontal supersonic flows. Γ_{s}^{\prime} is a sonic line separating subsonic flows in a neighborhood of O from supersonic downstream flows.

Fig. 2. The domain Ω.
mixed-type equations and free boundaries (transonic shocks). However, using the hodograph transformation, the nonlinear potential flow equations (1.1a)-(1.1b) can be transformed to Chaplygin's equation ${ }^{2}$

$$
\begin{equation*}
Q(\Phi)=\sum_{i, j=1}^{2} a^{i j} \partial_{i j} \Phi:=\left(c^{2}-v^{2}\right) \Phi_{u u}+2 u v \Phi_{u v}+\left(c^{2}-u^{2}\right) \Phi_{v v}=0 \tag{1.2}
\end{equation*}
$$

where the function c (called the sonic speed in gas dynamics) is given by Bernoulli law [7, p. 23]

$$
\mu^{2}\left(u^{2}+v^{2}\right)+\left(1-\mu^{2}\right) c^{2}=c_{*}^{2},
$$

with the constants $c_{*}>0$ and $\mu=\sqrt{(\gamma-1) /(\gamma+1)} \in(0,1)$. Here $\gamma>1$ is the adiabatic exponent for polytropic gas. The unknown shock-front (free boundary) \mathcal{S} becomes the fixed boundary S given by the shock polar in the phase plane (u, v), and the surface of the ramp is transformed to W_{2} and W_{1} (see Fig. 2). The price is that the boundary condition on S becomes $\Phi_{u}-\Upsilon\left(\Phi_{v}\right)=0$, where Υ is an unknown function such that $\Upsilon^{\prime}(y)=v /\left(u_{0}-u\right)$. In other words, $x=\Upsilon(y)$ is the equation of the shock-front in the physical plane (x, y). One can check that it is a non-classical nonlinear nonlocal oblique derivative condition.

[^1]
https://daneshyari.com/en/article/4615440

Download Persian Version:

https://daneshyari.com/article/4615440

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: llbaihe@gmail.com (L. Liu), mengxu33@pku.org.cn (M. Xu), hairongyuan0110@gmail.com, hryuan@math.ecnu.edu.cn (H. Yuan).
 ${ }^{1}$ Note that in this paper we use subscript like u_{x} to denote the partial derivative $\frac{\partial u}{\partial x}$.

[^1]: ${ }^{2}$ For details, see [7, p. 248, Sec. 103]. The unknown function $\Phi=\Phi(u, v)$ is introduced such that $\Phi_{u}=x, \Phi_{v}=y$.

