Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball

Yongmin Liu ${ }^{\mathrm{a}, *, 1}$, Yanyan Yu^{b}
${ }^{\text {a }}$ School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
b School of Mathematics and Physics Science, Xuzhou Institute of Technology, Xuzhou 221000, People's Republic of China

A R T I C L E I N F O

Article history:

Received 21 May 2014
Available online 5 October 2014
Submitted by J.A. Ball

Keywords:

Logarithmic Bloch space
Weighted-type spaces Multiplication operator
Composition operator
Radial derivative operator

Abstract

Let $H(\mathbb{B})$ denote the space of all holomorphic functions on the unit ball \mathbb{B} of \mathbb{C}^{n}, $\psi \in H(\mathbb{B})$ and φ be a holomorphic self-map of \mathbb{B}. Let C_{φ}, M_{ψ} and \mathcal{R} denote the composition, multiplication and radial derivative operators, respectively. In this paper, we characterize the boundedness and compactness of linear operators induced by products of these operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let $z=\left(z_{1}, \cdots, z_{n}\right)$ and $w=\left(w_{1}, \cdots, w_{n}\right)$ be points in the complex vector space \mathbb{C}^{n} and $z \bar{w}:=\langle z, w\rangle=$ $z_{1} \overline{w_{1}}+z_{2} \overline{w_{2}}+\cdots+z_{n} \overline{w_{n}}$ the inner product of z and w, where $\overline{w_{k}}$ is the complex conjugate of w_{k}. We also write

$$
|z|=\sqrt{\langle z, z\rangle}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}}
$$

Let $\mathbb{B}=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ be the open unit ball in $\mathbb{C}^{n}, H(\mathbb{B})$ the class of all holomorphic functions on the unit ball. Let $\psi \in H(\mathbb{B})$ and φ be a holomorphic self-map of \mathbb{B}. Composition, multiplication and radial derivative operators on $H(\mathbb{B})$ were defined as follows:

[^0]http://dx.doi.org/10.1016/j.jmaa.2014.09.069
0022-247X/© 2014 Elsevier Inc. All rights reserved.
\[

$$
\begin{aligned}
& \left(C_{\varphi} f\right)(z)=(f \circ \varphi)(z)=f(\varphi(z)), \quad z \in \mathbb{B} ; \\
& \left(M_{\psi} f\right)(z)=\psi(z) f(z), \quad z \in \mathbb{B} ; \\
& \mathcal{R} f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z), \quad z \in \mathbb{B} .
\end{aligned}
$$
\]

It is well known that $[13,37]$

$$
\mathcal{R} f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z)=\langle\nabla f(z), \bar{z}\rangle,
$$

where

$$
\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}(z), \frac{\partial f}{\partial z_{2}}(z), \cdots, \frac{\partial f}{\partial z_{n}}(z)\right)
$$

is the complex gradient of function f.
Let $\varphi=\left(\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right)$ denote a holomorphic self-map of \mathbb{B}. Write

$$
\begin{gathered}
\mathcal{R} \varphi(z)=\left(\mathcal{R} \varphi_{1}(z), \mathcal{R} \varphi_{2}(z), \cdots, \mathcal{R} \varphi_{n}(z)\right), \\
|\varphi(z)|=\sqrt{\sum_{j=1}^{n}\left|\varphi_{j}(z)\right|^{2}}, \\
|\mathcal{R} \varphi(z)|=\sqrt{\sum_{j=1}^{n}\left|\mathcal{R} \varphi_{j}(z)\right|^{2}}
\end{gathered}
$$

For $\psi_{1}, \psi_{2}, \psi_{3} \in H(\mathbb{B})$, we introduce the following operator

$$
T_{\psi_{1}, \psi_{2}, \psi_{3}, \varphi} f(z)=\psi_{1}(z) f(\varphi(z))+\psi_{2}(z) \mathcal{R} f(\varphi(z))+\psi_{3}(z) \mathcal{R}(f \circ \varphi)(z), \quad f \in H(\mathbb{B}) .
$$

It is clear that all products of composition, multiplication and radial derivative operators in the following six ways can be obtained from the operator $T_{\psi_{1}, \psi_{2}, \psi_{3}, \varphi}$ by fixing $\psi_{1}, \psi_{2}, \psi_{3}$. More specifically we have

$$
\begin{array}{lr}
M_{\psi} C_{\varphi} \mathcal{R}=T_{0, \psi, 0, \varphi}, & C_{\varphi} \mathcal{R} M_{\psi}=T_{\mathcal{R} \psi(\varphi), \psi(\varphi), 0, \varphi}, \quad C_{\varphi} M_{\psi} \mathcal{R}=T_{0, \psi \circ \varphi, 0, \varphi}, \\
\mathcal{R} M_{\psi} C_{\varphi}=T_{\mathcal{R} \psi, 0, \psi, \varphi}, & M_{\psi} \mathcal{R} C_{\varphi}=T_{0,0, \psi, \varphi}, \quad \mathcal{R} C_{\varphi} M_{\psi}=T_{\mathcal{R}(\psi \circ \varphi), 0, \psi \circ \varphi, \varphi} .
\end{array}
$$

The logarithmic Bloch space $\mathcal{B}_{\text {log }}$ consists of all $f \in H(\mathbb{B})$ such that [17]

$$
\|f\|=\sup _{z \in \mathbb{B}}\left(1-|z|^{2}\right)\left(\log \frac{e}{1-|z|^{2}}\right)|\mathcal{R} f(z)|<\infty .
$$

The little logarithmic Bloch space $\mathcal{B}_{\text {log }, 0}$ consists of all $f \in H(\mathbb{B})$ satisfying

$$
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left(\log \frac{e}{1-|z|^{2}}\right)|\mathcal{R} f(z)|=0 .
$$

It is easy to see that both $\mathcal{B}_{\text {log }}$ and $\mathcal{B}_{\text {log }, 0}$ are Banach spaces with the norm

$$
\|f\|_{\mathcal{B}_{\log }}=|f(0)|+\|f\| .
$$

https://daneshyari.com/en/article/4615441

Download Persian Version:

https://daneshyari.com/article/4615441

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: minliu@jsnu.edu.cn (Y. Liu), yuyanyan@xzit.edu.cn (Y. Yu).
 1 Supported by the Natural Science Foundation of China (11171285) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

