# Remarks on multiplicity of solutions for a subquadratic elliptic equation 

Li Chengyue<br>Department of Mathematics, Minzu University of China, Beijing 100081, China

## A R T I C L E I N F O

## Article history:

Received 7 August 2013
Available online 8 October 2014
Submitted by P.J. McKenna

## Keywords:

Elliptic equations
Subquadratic potentials
Boundary value problem
Clark Theorem
Critical points


#### Abstract

We consider a subquadratic elliptic equation in a bounded domain $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$. By the Clark Theorem, we obtain the existence and multiplicity of its nontrivial solutions, and we show that this result has a great relationship with $\Omega$ itself. The above argument can be extended to biharmonic equations.


© 2014 Elsevier Inc. All rights reserved.

## 1. Introduction

Consider the boundary value problem for the elliptic equation

$$
\left\{\begin{array}{l}
-\Delta u(x)=V_{u}(x, u(x)), \quad x \in \Omega  \tag{BVP}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$ is a bounded domain with a smooth boundary, the nonlinearity $V(x, u): \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, and $V_{u}(x, u)=\partial V / \partial u$ denotes the partial derivative of $V(x, u)$ with respect to $u$. If $V(x, u)$ satisfies $\lim \sup _{|u| \rightarrow \infty} V(x, u) /|u|^{2} \leq a<\infty$, then we say that (BVP) is subquadratic. If $\lim _{|u| \rightarrow \infty} V(x, u) /|u|^{2}=\infty$, then (BVP) is superquadratic. In this paper, our main goal is to find the existence and multiplicity of solutions of (BVP) for the subquadratic case.

Let $\lambda_{k}(k=1,2, \cdots)$ denote the eigenvalues and $\psi_{k}(k=1,2, \cdots)$ denote the corresponding eigenfunctions of the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta u(x)=\lambda u(x), \quad x \in \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where each $\lambda_{k}$ is repeated as often as multiplicity such that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$. Recall that $\psi_{1}$ is positive (or negative) and the eigenfunctions associated with $\lambda_{k}(k \geqslant 2)$ are sign-changing.

[^0]In [7], Landsman and Lazer assumed that $V_{u}(x, u)=\lambda_{1} u+g(x, u)$, where $g$ is a bounded Carathéodory function for which $g_{ \pm \infty}(x)=\lim _{s \rightarrow \pm \infty} g(x, s)$. If $\int_{\Omega} g_{+\infty} \psi_{1} d x<0<\int_{\Omega} g_{-\infty} \psi_{1} d x$ or $\int_{\Omega} g_{+\infty} \psi_{1} d x>$ $0>\int_{\Omega} g_{-\infty} \psi_{1} d x$, then they have proved that (BVP) admits at least one solution. In [2], Brown studied (BVP) for $V_{u}(x, u)=\lambda u+b(x)|u|^{\gamma-2} u, 1<\gamma<2$. He obtained, for every $\lambda<\lambda_{1}$, (BVP) has one solution if $\int_{\Omega} b \psi_{1}^{\gamma} d x>0$; and whenever $\lambda_{1}<\lambda \leqslant \lambda_{1}+\delta$ for some small $\delta>0$, (BVP) has two solutions if $\int_{\Omega} b \psi_{1}^{\gamma} d x<0$. In [5], Costa and Willem assumed $V(x, u)=V(u)$ is strictly convex and $\left|V_{u}-\beta_{1} u\right| \leqslant \beta_{2}|u|+\beta_{3}$ for some suitable $\beta_{k}>0(1 \leqslant k \leqslant 3)$, and they got a multiplicity result of (BVP). Motivated by $[7,2,5]$ and references therein, in the present paper, we shall combine the subquadraticity of $V(x, u)$ with some special property of $\Omega$ to study (BVP). Exactly, we have the following result:

Theorem 1. Let $d_{\Omega}$ denote the diameter of $\Omega$. Suppose $V(x, u)$ satisfies that
$\left(\mathrm{V}_{1}\right) V(x, u)=V(x,-u), \forall x \in \Omega, u \in \mathbb{R}$;
$\left(\mathrm{V}_{2}\right)$ there exist $m>0, b>0$ such that $d_{\Omega}<\frac{\pi}{\sqrt{m}}$, and

$$
|V(x, u)| \leq b+\frac{1}{2} m|u|^{2}, \quad \forall x \in \Omega, u \in \mathbb{R}
$$

$\left(\mathrm{V}_{3}\right)$ there exist $p \in \mathbb{N}, M>0$ and $\rho>0$ such that $d_{\Omega}>\frac{2 p \pi}{\sqrt{M}}, M>4 m p^{2}$, and

$$
V(x, u) \geq \frac{1}{2} M|u|^{2}, \quad \forall x \in \Omega,|u| \leq \rho \sqrt{p} .
$$

Furthermore, if $\Omega$ satisfies that there exists an orthogonal function group $\left\{e_{j}(x)\right\}_{1 \leqslant j \leqslant p} \subset \mathbb{C}(\bar{\Omega})$ in $H_{0}^{1}(\Omega)$ and $L^{2}(\Omega)$ respectively, such that
$\left(\mathrm{V}_{4}\right) \int_{\Omega}\left|\nabla e_{j}(x)\right|^{2} d x \leq\left(\frac{2 j \pi}{d_{\Omega}}\right)^{2} \int_{\Omega}\left|e_{j}(x)\right|^{2} d x, \forall 1 \leq j \leq p$,
then, (BVP) has $p$ distinct pairs $(u(x),-u(x))$ of nontrivial classical solutions, provided that $d_{\Omega} \in$ $\left(\frac{2 p \pi}{\sqrt{M}}, \frac{\pi}{\sqrt{m}}\right)$.

Remark 1. If $V(x, u)$ satisfies
$\left(\mathrm{V}_{2}^{\prime}\right) \lim _{|u| \rightarrow \infty} V(x, u) /|u|^{2}=0$ uniformly in $x \in \Omega$, $\left(\mathrm{V}_{3}^{\prime}\right) \lim _{|u| \rightarrow 0} V(x, u) /|u|^{2}=\infty$ uniformly in $x \in \Omega$,
then, $\forall d_{\Omega}>0, p \geq 1$, we can find $m>0, M>0$ and $\rho>0$ such that $\left(\mathrm{V}_{2}\right)-\left(\mathrm{V}_{3}\right)$ hold.
Remark 2. In [9], to some extent, we have discussed the case of $N=1$ for Theorem 1, making use of Clark Theorem as follows.

Clark Theorem. (See [3].) Let $X$ be a Banach space and $\varphi \in \mathbb{C}^{1}(X, \mathbb{R})$ be even satisfying the Palais-Smale condition. Suppose that (i) $\varphi$ is bounded from below; (ii) there exist a closed, symmetric set $K \subset X$ and $p \in \mathbb{N}$ such that $K$ is homeomorphism to $S^{p-1} \subset \mathbb{R}^{p}$ by an odd map, and $\sup \{\varphi(x): x \in K\}<\varphi(0)$. Then $\varphi$ possesses at least $p$ distinct pairs $(u,-u)$ of critical points with corresponding critical values less than $\varphi(0)$.

For superquadratic case of (BVP), we refer the reader to $[13,4,1]$.
The plan of the paper is as follows. In Section 2, by adapting some arguments employed in [9], we shall give the proof of Theorem 1. In Section 3, an application to $\Omega=B_{r}(0) \subset \mathbb{R}^{2}$ yields an interesting result:

# https://daneshyari.com/en/article/4615445 

Download Persian Version:

## https://daneshyari.com/article/4615445

## Daneshyari.com


[^0]:    http://dx.doi.org/10.1016/j.jmaa.2014.10.007
    0022-247X/© 2014 Elsevier Inc. All rights reserved.

