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We prove existence of solutions to the two-dimensional Euler equations with 
vorticity bounded and with velocity locally bounded but growing at infinity at 
a rate slower than a power of the logarithmic function. We place no integrability 
conditions on the initial vorticity. This result improves upon a result of Serfati which 
gives existence of a solution to the two-dimensional Euler equations with bounded 
velocity and vorticity.
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1. Introduction

We consider the Euler equations governing incompressible inviscid fluid flow in the plane, given by⎧⎨
⎩

∂tu + u · ∇u = −∇p

div u = 0
u|t=0 = u0.

(E)

In this paper, we investigate the existence of solutions to (E) for which vorticity ω(u) = ∂1u2 − ∂2u1 is 
bounded and velocity may grow at infinity, but at a rate slower than log1/4

2 |x|.
The three-dimensional Euler equations with nondecaying velocity are considered in [6], where Constantin 

proves that there exists a solution to (E) with nondecaying velocity which blows up in finite time. In two 
dimensions, existence and uniqueness of solutions to (E) with (u, ω) ∈ L∞(R2) × L∞(R2) and without any 
integrability conditions on u or ω is established by Serfati [9]. Properties of Serfati solutions are further 
investigated in [1], where the authors extend the existence and uniqueness results of Serfati to an exterior 
domain. Building on results from [9], Taniuchi [10] proves existence of solutions to (E) with velocity bounded 
and vorticity belonging to the space Y 0

ul, which contains bmo and allows for unbounded vorticity (without 
placing any integrability conditions on u or ω). In [11], Taniuchi, Yoneda and Young establish uniqueness 
of solutions in a subset of Taniuchi’s existence class by modifying methods from [12].
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Solutions to the two-dimensional Euler equations for which velocity grows at infinity are considered in [2]. 
The authors show that if initial velocity obeys the estimate

∣∣u0(x)
∣∣ ≤ C

(
1 + |x|α

)
(1.1)

for some α ∈ [0, 1) and the initial vorticity ω0 belongs to Lp∩L∞(R2) for p < 2/α, then the velocity satisfies 
(1.1) at all positive times. Similarly to [2], Brunelli [4] assumes that the initial velocity satisfies (1.1) with 
α = 1/2 and that ω0 is bounded and satisfies

∫
R2

ω0(y)
|x− y| dy < ∞

for some x ∈ R
2. He proceeds to show that under these assumptions, the growth rate of velocity is preserved 

at later times.
We remark that, in regard to the Navier–Stokes equations, short time existence of solutions in two and 

three dimensions with velocity bounded and nondecaying is shown in [7]. In [8], the authors show that in 
dimension two, the solution of [7] can be extended globally in time.

In this paper we consider solutions to (E) for which vorticity is bounded and potentially nondecaying and 
velocity may grow at infinity more slowly than a power of the logarithmic function. We prove the following 
theorem.

Theorem 1. Let u0 be such that gu0 and ω0 = ω(u0) belong to L∞(R2), where g(x) = log−1/4
2 (2 + |x|) for 

all x ∈ R
2. There exists a weak solution u to (E) on [0, ∞) with

gu ∈ L∞
loc

(
[0,∞), L∞(

R
2)), and

ω ∈ L∞(
[0,∞), L∞(

R
2)).

The proof of Theorem 1 consists of three steps: (i) Using the initial data u0, we construct a sequence of 
smooth solutions (un) to the Euler equations which lie in our existence class and which converge uniformly 
on compact subsets of R2. (ii) We establish an upper bound on the L∞-norms of the sequence (gun) which 
is independent of n. (iii) We pass to the limit and use the uniform bound from step (ii) to show that the 
limit u is a solution to (E) in our existence class with initial data u0.

To establish the uniform bound in step (ii), we let u be a smooth solution to (E), fix N ≤ −1, and write 
gu as a sum of two terms:

gu(t, x) = gSNu(t, x) + g(Id − SN )u(t, x), (1.2)

where SNu = χN ∗ u, χN = 22Nχ(2N ·), and χ is a radial Schwartz function which integrates to one. One 
can easily estimate the L∞-norm of the second term of (1.2) using membership of ω to L∞. The first term 
is more delicate. The main obstacle lies in estimating the pressure, specifically terms of the form

g(x)
∑

i,j=1,2
∇SNRiRj(uiuj), (1.3)

where Rk denotes the Riesz operator. Since the Riesz operators are not bounded on L∞(R2), we write (1.3)
as a convolution and apply the Riesz operators to the function ∇χN . We are then able to bound (1.3) by

g(x)‖gu‖2
L∞

∫
R2

∣∣RiRj∇χN (y)
∣∣(1/g2)(x− y) dy, (1.4)
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