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1. Introduction

In this article we shall consider the class of second kind Volterra integral equations of the form

// ”‘”’() Sdodr+f(t), 0<a, B<1, (1.1)

t—T7)(r —0)f

where (t,7,0) € 2 ={0< o <7 <t<T}and y(0) = f(0).
In addition, the functions k and f are assumed to be sufficiently smooth and k(¢,¢,t) # 0 for all ¢ € [0, T].

2. A diffusion problem

Consider the nonlocal (in time) diffusion problem
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%(O,t): >0, (2.2)
) oo
C
%(u)_—o/ el >0 (2.3)

subject to initial condition ¢(z,0) = ¢o.
Take Laplace Transforms with respect to t:

d?¢

) (x,8) — sé(x,8) = —co

yielding the solution

¢(x,s) = A(s) cosh /sx + B(s)sinh /sx + ‘.
s

where ¢(z, s) = [;° e *'c(, t)dt.
From (2.2) we have

é(z,s) = A(s) cosh v/sx + .
s
Set = 1 and solve for A(s):
_ Co
A(s) = (c(l,s) - ;)/cosh\/g

or

_ (c(1,s) — <)
c(z,s) = p— \/_ cosh /sz —|— — (2.4)

Differentiate with respect to  and employ (2.3):

(e(L,5) — ) [ .
cosh\/_ V/ssinhy/s = —L O/\/mc(l,T)dT] =7 (1,s)
by convolution.
Therefore
_ _ ¢ [cothys\/ 1 il
é(l,s) = . ( 7 )(\/§> (1,s). (2.5)
However [2],

COth\/g e 2 2 1 ad 2
L' =142y et — (142 e/t 2.6
(] <123 e - L (12 20

Using (2.6) and applying convolution twice we observe that (2.5) transforms to

1

e(1,t) —co—//\/ﬁ<l+226_" /(= T>> mc(LU)dUClT
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