A class of spectral self-affine measures with four-element digit sets

Ming-Shu Yang, Jian-Lin Li*
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, PR China

A R T I C L E I N F O

Article history:

Received 1 June 2014
Available online 8 October 2014
Submitted by P.G. Lemarie-Rieusset

Keywords:

Iterated function system
Self-affine measure
Spectral pair
Compatible pair
Digit set

Abstract

The self-affine measure $\mu_{M, D}$ associated with an expanding matrix $M \in M_{n}(\mathbb{Z})$ and a finite digit set $D \subset \mathbb{Z}^{n}$ is uniquely determined by the self-affine identity with equal weight. In this paper we construct a class of self-affine measures $\mu_{M, D}$ with four-element digit sets in the higher dimensions $(n \geq 3)$ such that the Hilbert space $L^{2}\left(\mu_{M, D}\right)$ possesses an orthogonal exponential basis. That is, $\mu_{M, D}$ is spectral. Such a spectral measure cannot be obtained from the condition of compatible pair. This extends the corresponding result in the plane.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and notations

For a probability measure μ of compact support on \mathbb{R}^{n}, we call μ a spectral measure if there exists a discrete set $\Lambda \subset \mathbb{R}^{n}$ such that $E(\Lambda):=\left\{e^{2 \pi i\langle\lambda, x\rangle}: \lambda \in \Lambda\right\}$ forms an orthogonal basis (Fourier basis) for $L^{2}(\mu)$. The set Λ is then called a spectrum for μ; we also say that (μ, Λ) is a spectral pair. It is known that (μ, Λ) is a spectral pair if and only if

$$
\begin{equation*}
\sum_{\lambda \in \Lambda}|\hat{\mu}(\xi+\lambda)|^{2}=1 \quad\left(\forall \xi \in \mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

where $\hat{\mu}$ denotes the Fourier transform of μ. In this paper we determine the spectrality of a class of self-affine measures with four-element digit sets in the higher dimensions $(n \geq 3)$. The self-affine measure considered here is the unique probability measure $\mu:=\mu_{M, D}$ satisfying the self-affine identity with equal weight:

$$
\begin{equation*}
\mu=\frac{1}{|D|} \sum_{d \in D} \mu \circ \phi_{d}^{-1} \tag{1.2}
\end{equation*}
$$

[^0]where $\phi_{d}(x)=M^{-1}(x+d)$ is an affine mapping, $M \in M_{n}(\mathbb{Z})$ is an expanding integer matrix, and $D \subset \mathbb{Z}^{n}$ is a finite digit set of cardinality $|D|$. Such a measure $\mu_{M, D}$ is supported on the attractor or invariant set $T(M, D)$ of the affine iterated function system (IFS) $\left\{\phi_{d}(x)\right\}_{d \in D}$. This is the unique nonempty compact subset $T:=T(M, D) \subset \mathbb{R}^{n}$ satisfying $T=\bigcup_{d \in D} \phi_{d}(T)$ (see [5]). From (1.2), the Fourier transform $\hat{\mu}_{M, D}(\xi)$ of the measure $\mu_{M, D}$ is given by
\[

$$
\begin{equation*}
\hat{\mu}_{M, D}(\xi)=\int e^{2 \pi i\langle x, \xi\rangle} d \mu_{M, D}(x)=\prod_{j=1}^{\infty} m_{D}\left(M^{*-j} \xi\right) \quad\left(\xi \in \mathbb{R}^{n}\right), \tag{1.3}
\end{equation*}
$$

\]

where M^{*} denotes the transposed conjugate of M (in fact, $M^{*}=M^{t}$) and

$$
\begin{equation*}
m_{D}(x)=\frac{1}{|D|} \sum_{d \in D} e^{2 \pi i\langle d, x\rangle} \quad\left(x \in \mathbb{R}^{n}\right) \tag{1.4}
\end{equation*}
$$

For a given pair (M, D), the spectrality of $\mu_{M, D}$ is directly connected with the above (1.1) and (1.3), where the function (1.4) plays an important role.

Let $S \subset \mathbb{Z}^{n}$ be a finite subset of the cardinality $|S|=|D|$ and $0 \in S$. Corresponding to the dual IFS $\left\{\psi_{s}(x)=M^{*} x+s\right\}_{s \in S}$, we use $\Lambda(M, S)$ to denote the expansive orbit of 0 under $\left\{\psi_{s}(x)\right\}_{s \in S}$, that is,

$$
\Lambda(M, S):=\left\{\sum_{j=0}^{k} M^{* j} s_{j}: k \geq 0 \text { and all } s_{j} \in S\right\}
$$

It was first observed by Jorgensen and Pedersen [6] that for certain M, D and S, the corresponding $\mu_{M, D}$ is a spectral measure with spectrum $\Lambda(M, S)$. This is surprising because some classical results on Fourier analysis can be established on the fractal sets. Later, Strichartz [15-17] extended the construction of [6] to a large class of measures. In all such researches, the condition that $\left(M^{-1} D, S\right)$ is a compatible pair (or (M, D, S) is a Hadamard triple) plays an essential role (see [2, Conjecture 2.5], [3, Problem 1] and [4, Conjecture 1.1]).

Definition 1.1. For two finite subsets G and P of \mathbb{R}^{n} of the same cardinality q, we say (G, P) is a compatible pair if the $q \times q$ matrix

$$
H_{G, P}:=\left[q^{-1 / 2} e^{2 \pi i\langle g, p\rangle}\right]_{g \in G, p \in P}
$$

is unitary, i.e. $H_{G, P} H_{G, P}^{*}=I_{q}$.
The well-known result of Jorgensen and Pedersen [6] shows that if $\left(M^{-1} D, S\right)$ is a compatible pair with the expanding matrix $M \in M_{n}(\mathbb{Z})$ and $D, S \subset \mathbb{Z}^{n}$, then $E(\Lambda(M, S))$ is an infinite orthogonal system in $L^{2}\left(\mu_{M, D}\right)$. Łaba and Wang [7] extended this result in the dimension one ($n=1$), and showed that $\mu_{M, D}$ is always a spectral measure. In the higher dimensions ($n \geq 2$), it often needs additional condition for $E(\Lambda(M, S))$ to be an orthogonal basis in $L^{2}\left(\mu_{M, D}\right)$ (see [12, Question 1.1]). In the plane ($n=2$), there are several methods to deal with the $\mu_{M, D}$-orthogonal exponentials in the case when $|D|=2,3,4$ (see [13] and references cited there). Most of them are suitable to the case $n \geq 3$. However, for the four-element digit set in the space $(n=3)$, the spectrality or the non-spectrality of $\mu_{M, D}$ is discussed only in the case $M=\operatorname{diag}\left(p_{1}, p_{2}, p_{3}\right)$ and $D=\left\{0, e_{1}, e_{2}, e_{3}\right\}$ (see [11]), where e_{1}, e_{2}, e_{3} are the standard basis of unit column vectors in \mathbb{R}^{3}. Moreover, the spectral measure is obtained only in the special case when $p_{1}, p_{2}, p_{3} \in 2 \mathbb{Z} \backslash\{0,2\}$ or when $p_{1}=p_{2}=p_{3}=p, p \in 2 \mathbb{Z} \backslash\{0\}$. It should be pointed out that the results on such spectral measures provide some supportive evidence on the conjecture that if $\left(M^{-1} D, S\right)$ is a compatible pair with

https://daneshyari.com/en/article/4615456

Download Persian Version:

https://daneshyari.com/article/4615456

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yangmingshu.good@163.com (M.-S. Yang), jllimath10@snnu.edu.cn (J.-L. Li).
 http://dx.doi.org/10.1016/j.jmaa.2014.10.004
 0022-247X/© 2014 Elsevier Inc. All rights reserved.

