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In this study, we consider the population dynamics of an invasive species and a 
resident species, which are modeled as a diffusive competition process in a radially 
symmetric setting with a free boundary. We assume that the resident species 
undergoes diffusion and growth in Rn, while the invasive species initially exists in a 
finite ball, but invades the environment with a spreading front evolving according to 
a free boundary. When the invasive species is inferior, we show that if the resident 
species is already well established initially, then the invader can never invade deep 
into the underlying habitat, thus it dies out before its invading front reaches a 
certain finite limiting position. When the invasive species is superior, a spreading–
vanishing dichotomy holds, and sharp criteria for spreading and vanishing with d1, 
μ, and u0 as variable factors are obtained, where d1, μ, and u0 are the dispersal 
rate, expansion capacity, and initial number of invaders, respectively. In particular, 
we obtain some rough estimates of the asymptotic spreading speed when spreading 
occurs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Various models are used to describe competition and co-existence dynamics in population ecology. A typ-
ical example is the following Lotka–Volterra competition reaction–diffusion system for two species in a 
bounded smooth domain Ω ⊂ R

n:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − d1Δu =

[
a1(x) − b1(x)u− c1(x)v

]
u, x ∈ Ω, t > 0,

vt − d2Δv =
[
a2(x) − b2(x)u− c2(x)v

]
v, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)
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where u and v denote the population densities of two competing species; d1 and d2 are positive and they 
represent the dispersal rates of two species; and the strictly positive functions ai(x), bi(x), and ci(x) (i =
1, 2) ∈ C1(Ω) ∩ L∞(Ω) denote the local growth rate of the population or the density of the local resource, 
the self-regulation of species, and competition between species, respectively.

In general, the long-term dynamics comprise one of the main problems investigated using (1.1) and they 
are quite well understood. The reader may refer to [4,5,14] and the references therein for further details. 
Typically, previous studies suggest that weak competition allows the coexistence of states in (1.1), whereas 
stronger competition leads to the extinction of species with low reproduction rates and large diffusion rates. 
More precisely, let λ∗ be the principal eigenvalue of the operator −Δ in Ω subject to the homogeneous 
Dirichlet boundary conditions. Set

aiL = inf
x∈Ω

ai(x), aiM = sup
x∈Ω

ai(x)

for i = 1, 2, and biL, biM , ciL, and ciM (i = 1, 2) are defined analogously. Then, the following results have 
been proved for (1.1):

1. If a1L > d1λ
∗ + a2Mc1M

c2L
and a2L > d2λ

∗ + a1Mb2M
b1L

, then a coexistence state exists for (1.1), i.e., 
a stationary solution (u∗, v∗) with u∗, v∗ > 0 in Ω;

2. If a1M
a2L

< min{ c1L
c2M

, b1Lb2M
}, a2L ≥ a1M , d1 = d2 = D, and a2L > Dλ∗, then the species u will eventually 

be driven to extinction, i.e., limt→∞ u(x, t) = 0 for any v0 �≡ 0;
3. If a1L

a2M
> max{ c1M

c2L
, b1Mb2L

}, a1L ≥ a2M , d1 = d2 = D, and a1L > Dλ∗, then the species v is eventually 
driven to extinction, i.e., limt→∞ v(x, t) = 0 for any u0 �≡ 0.

In the second case, the competitor u is wiped out by v in the long term and v will win the competition 
in an ecological context, thus we refer to v as the superior competitor and u as the inferior competitor. 
Analogously, v is the inferior competitor and u is the superior competitor in the third case. The first case 
is often regarded as the weak competition case, where neither competitor wins or loses the competition.

However, we still note that the model (1.1) is not realistic for describing the dynamics of a new competitive 
species that invades the habitat of a resident species because of the limited fixed domain and the lack of 
information about the precise invasion dynamics. Thus, it is necessary to relax these requirements and to 
consider the precise dynamics of an invading species when it spreads in a new habitat.

Given this aim, the current study is concerned with the impact of spatial features in an environment on 
the dynamics of a new competitor u with a free boundary to describe the moving front when it invades the 
habitat of a resident species v. For simplicity, we assume that the environment is radially symmetric and we 
investigate the behavior of the positive solution (u(r, t), v(r, t), h(t)) with r := |x| (x ∈ R

n) to the following 
variation of the reaction–diffusion problem (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu =
[
a1(r) − b1(r)u− c1(r)v

]
u, 0 < r < h(t), t > 0,

vt − d2Δv =
[
a2(r) − b2(r)u− c2(r)v

]
v, 0 < r < ∞, t > 0,

ur(0, t) = vr(0, t) = 0, u(r, t) = 0, h(t) ≤ r < ∞, t > 0,
h′(t) = −μur

(
h(t), t

)
, t > 0,

u(r, 0) = u0(r), h(0) = h0, 0 ≤ r ≤ h0,

v(r, 0) = v0(r), 0 ≤ r < ∞,

(1.2)

where Δu = urr + n−1
r ur, r = h(t), denotes the spreading front, i.e., the free boundary that needs to be 

determined; d1, d2 > 0 are diffusion rates; μ > 0, the expansion capacity, is the ratio of the expansion speed 
of the free boundary relative to the population gradient at the expanding front, which explains the ability 
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